概览 NASA 有效载荷按照 CLPS 任务命令 19D 飞往危海。 ME Banks 1,C. Barney 2,C. Buhler 3,CI Calle 3,M. Carter 4,M. Collier 1,D. Currie 5,J. Davis 2,M. DuPuis 3,A. Goode 4,RE Grimm 6,Z. Hull 2,D. Klumpar 2,BJ LaMeres 2,RW Maddock 7,CM Major 2,M. Mehta 8,MM Munk 7,S. Nagihara 9,CP Nguyen 7,JJK Parker 1,J. Sample 2,L. Springer 2,DE Stillman 6,O. Tyrrell 7,BM Walsh 10,RN Watkins 11,12,K. Zacny 13。 1 美国国家航空航天局戈达德太空飞行中心,maria.e.banks@nasa.gov,2 蒙大拿州立大学,3 美国国家航空航天局肯尼迪航天中心,4 宙斯盾航天公司,5 马里兰大学,6 西南研究所,7 美国国家航空航天局兰利研究中心,8 美国国家航空航天局马歇尔太空飞行中心,9 德克萨斯理工大学,10 波士顿大学空间物理中心,11 北极斜坡地区联邦公司,12 美国国家航空航天局总部,13 Honeybee Robotics。
• 政府要求能力的进展 • 月球着陆(1 个月球日,最多 14 个地球日) • 南极着陆(PRIME-1、TO-19C) • ~500 公斤有效载荷(VIPER;TO20A) • 精密/复杂的有效载荷补充(TO-19D、CP-11) • 远端着陆(数据返回;CP-12)(STN 仪器) • 移动即服务(未来 TO CP-21) • 目标轨道交付(TO CS-3、CS-4)(STN 仪器) • 夜间着陆器生存(未来)
撞击后,每个穿透器都可以通过专用通道连续向着陆器上的 Lora (915MHz) 接收器网关盒发送高达 300 kbps 的数据。网关盒中将组合多达十二个数据通道(每个穿透器节点一个通道)(总计 3.6 Mbps)并路由到 CLPS RS-422 总线,然后从那里进入 CLPS 地球下行链路。对于运行版本,数据流设计为持续 5 年。穿透器将由太阳能供电以实现这一使用寿命。在撞击过程中,穿透器的后舱被分离并留在月球表面,其中包含天线和太阳能电池阵列,以及照相机和任何其他需要表面访问的仪器。
• 包括对载人着陆系统的无人测试 • 承包商/供应商负责获取运载火箭 • 用于大型货物任务的 CLINS(可分离);(不与 GLS 或 CLPS 竞争) • 服务
o 由具有多个理事会代表的 CLPS 清单选择委员会 (CMSB) 体现 o 指定有效载荷集成经理和项目科学家来指导集成并最大化科学 o 旨在通过调查推动科学、技术和探索
2020 年 7 月,NASA 选择月球 GNSS 接收机实验 (LuGRE) 作为 CLPS 任务订单 19D 的第 10 个有效载荷 [17]。2021 年 2 月,NASA 将任务订单 19D 授予 Firefly Aerospace。Firefly 的蓝色幽灵任务 1 (BGM1) 将把 LuGRE 和其他 CLPS 19D 有效载荷运送到月球危海的 18.6° N、61.8° E。LuGRE 旨在首次在 30 RE 以上的高度演示基于 GNSS 的导航,也是首次在月球表面使用 GNSS。LuGRE 科学目标的实现将扩大可用 GNSS 信号的已证实覆盖范围。后续任务将能够利用 LuGRE 数据和经验教训在月球区域内实现 GNSS 的运行,为探索月球的航天器增加一个现有的、经过验证的实时导航源。 2 卢格雷科学目标
• ISRU 子规模演示 • 自主性和机器人技术(例如 • 电源阵列、功率传输、 • 挖掘 IM-2 演示(在 CLPS IDIQ 上) • 燃料电池) • 建筑 • 除尘 • 极地资源冰采实验 (PRIME-1) • 诺基亚 4G LTE 通信 • 直观机器 (TP) 可部署裂变氧气提取料斗 (TP) 地面演示表面电力演示
摘要:环状脂肽(CLP)是具有不同生物学功能的有效次级代谢产物。芽孢杆菌菌株主要产生三个关键家族的CLP,即Iturins,风霉素和表面蛋白,每种都包含结构变体,其特征在于与脂肪酸链相关的环状肽。尽管对CLP进行了广泛的研究,但这些类似物的个别作用及其在驱动生物学活动中的比例仍在很大程度上被忽略了。在这项研究中,我们从velezensis umaf6639中纯化和化学表征了CLP变体,并对它们单独测试了它们的抗真菌和植物生长促进作用。我们分离了5个含有ITURIN A类似物的分数(从C 13到C 17),5个甲壳霉素级分(包含C 16,C 17和C 18风霉素A和C 18风霉素A和C 14,C 15,C 16,C 16和C 17 fengecin B)和5个表面菌馏分(从C 12到C 16)。我们表明,基于每种脂肪肽变体计算的生理比率,抗真菌活性和种子梯形生长促进如何依赖脂蛋白结构变体和浓度。值得注意的是,我们发现最有毒的变体是最少的,它们可能在保留生物活性的同时最小化自毒性。通过与更丰富,更积极的类似物的协同互动来实现这种平衡。此外,某些风水和表面素的变体被证明可以增加细菌种群密度和外多糖产生,对微生物竞争的关键策略,具有重大的生态影响。■简介除了促进基本知识外,我们的发现还将支持精确生物技术创新的发展,提供有针对性的解决方案来推动可持续的粮食生产和保存策略。关键词:环状脂肪肽,结构变体,类似物,芽孢杆菌,抗真菌,抗真菌,植物生长促进,生物技术,可持续农业,食品控制。
好处:•LSMS解决了机器人系统(TX04),ISRU(TX06),勘探(TX07)以及材料和结构(TX12)的关键技术领域,以及自主促进的协作机会。•商业月球有效载荷服务(CLP)集成为商业化,成本分担和每单位成本降低提供了快速的途径。•经过飞行证明后,便宜地复制设备。
太空产业正在蓬勃发展——从最近 Artemis 计划第一阶段的成功,到即将推出的为九次登月做准备的商业月球有效载荷服务 (CLPS) 计划。因此,必须调整用于靠近地球轨道的航天器的观测程序,以适应地球同步轨道 (GEO) 以外的太空区域 (XGEO)。然而,围绕 XGEO 存在着长期挑战,例如三体问题及其后续轨道的复杂性,以及感知比 GEO 远许多倍的物体的困难。这些挑战使得大多数传统的航天器跟踪、检测、成像和观测生成技术无法使用。