和流式细胞仪用于通过RWA 264.7细胞研究H40-PEG NP和ASP8 [H40-PEG@(RBC-H)] NP的摄取来评估这种能力。如图1 K,与H40-PEG加载的FITC NPS组相比,CLSM检测到的ASP8 [H40-FITC@(RBC-H)] NP的荧光强度显着弱。此外,与H40-PEG负载FITC NP相比,如流式细胞仪所示,ASP8 [H40-FITC@(RBC-H)] NPS组的相对荧光强度降低了约10%(图。1 L),与CLSM分析的结果一致(附加文件1:图S3)。这些发现表明,含有一些特殊的膜蛋白(例如CD47)的RBC-H杂种膜将H40-PEG NP赋予具有免疫逃生能力的H40-PEG NP,以避免巨噬细胞吞噬作用。因此,ASP8 [H40-FITC@(RBC-H)] NP可以避免体内巨噬细胞吞噬作用。
预拌混凝土和 CLSM 1.0 一般规定 本规范描述了供应和交付用于高速公路建设和维护的预拌混凝土和受控低强度材料 (CLSM) 的最低材料和质量要求。混凝土和 CLSM 必须符合所有适用的纽约州交通部 (NYSDOT) 规范。 2.0 材料要求 预拌混凝土的材料、配料设施以及搅拌机和输送装置应符合最新的 NYSDOT 标准规范第 501 节最新修订版中关于波特兰水泥混凝土的要求。为受控低强度材料 (CLSM) 提供的材料应符合最新的 NYSDOT 标准规范第 204 节流动填料的要求。 罗彻斯特市混凝土混合料设计 混凝土混合料设计应符合罗彻斯特市材料规范,包括所有附录。设计标准基于 2.50 至 3.00 之间的细骨料细度模量。混合比例应根据细度模量和体积比重(骨料的饱和表面干燥)的实际条件确定。粗混凝土水泥 % 空气坍落度骨料等级磅/立方米含量范围级配主要用途 K 564 5% – 7% 2” – 3” CA 4 通用 L 329 3% – 5% 0” – 2” CA 4 路缘支架安大略县 4,000 PSI 结构混凝土混合料设计供应的混凝土必须符合所有适用的 (ASTM) 一般用途规范。所有结构混凝土的混凝土混合料设计应提供 4,000 psi 的最低极限强度,并应包括由硝酸钙溶液组成的腐蚀抑制剂,该溶液按重量计含有 30% 的硝酸钙固体,重 10.6 磅/加仑。腐蚀抑制剂应以水溶液的形式添加到混凝土中,剂量率为 2.0 加仑/立方码。溶液中的水应计入总混合水量的一部分。空气含量应为 6.5%,最大坍落度应为 4 英寸。取样和测试采购机构保留在任何浇注过程中取样的权利,以测试混凝土是否符合规定的性能标准。任何不符合这些测试最低标准的产品都可能需要更换。
Nomenclature Abbreviations BHE borehole heat exchanger CLSM controlled low-strength material EAHE earth-air heat exchanger GE geothermal energy GHE ground heat exchanger GPP geothermal power plant GSHP ground source heat pump HVAC heating, ventilating, and air conditioning MPCM microencapsulated phase change material PCM phase change material RES renewable energy source TES thermal energy storage TRT热响应测试
图 1 心脏靶向(Gal4 Τ inC Δ 4 )蛋白酶体 Pros β 5 基因的 KD 导致蛋白质组不稳定和线粒体数量减少。 (a) Pros β 5 siRNA 后心脏组织中 Pros β 5 基因的相对表达(与对照相比)。 (b, c) Pros β 5 RNAi(与对照相比)果蝇心脏组织中相对 (%) 26S 蛋白酶体活性 (b) 和 ROS 水平 (c)。 (d) Pros β 5 KD 后果蝇心脏组织中蛋白质组泛素化 (Ub) 和羰基化 (DNP) 的免疫印迹分析。 (e) CLSM 观察用 LysoTracker 染色的 Pros β 5 RNAi(与对照相比)果蝇心管(e1)、LysoTracker 定量(e2)和使用溶酶体标记物抗 Lamp1(e3)进行免疫印迹分析。(f) 所示基因型果蝇心脏组织中蛋白酶活性的相对(%)。(g) blw/ATP5A 免疫荧光染色后,CLSM 可视化所示果蝇品系心脏组织中的线粒体;细胞核用 DAPI 复染。(h) Pros β 5 KD 后,所示基因型分离心脏组织中所示线粒体基因的相对表达水平(与对照相比)。在 (a, h) 中,基因表达与相应对照作图;使用 RpL32/rp49 基因作为 RNA 输入参考。 (d)和(e3)中的 Gapdh 和 Actin 探测分别用作蛋白质输入参考。p 值采用非配对 t 检验计算。条形图,± SD(n ≥ 3);* p < 0.05;** p < 0.01
摘要:纳豆激酶 (NK) 是一种强效的溶栓酶,可溶解血栓,在心血管疾病的治疗中被广泛使用。然而,由于其高分子量和蛋白质性质,稳定性和生物利用度问题使其有效输送仍然很困难。在本研究中,我们通过反相蒸发法开发了新型 NK 负载非靶向脂质体 (NK-LS) 和靶向脂质体 (RGD-NK-LS 和 AM-NK-LS)。通过 Zetasizer、SEM、TEM 和 AFM 进行物理化学表征 (粒度、多分散性指数、zeta 电位和形态)。Bradford 测定和 XPS 分析证实了靶向配体的表面结合成功。通过 CLSM、光子成像仪 optima 和流式细胞术进行的血小板相互作用研究表明,靶向脂质体的血小板结合亲和力明显较高 (P < 0.05)。使用人体血液和 CLSM 成像进行的纤维蛋白溶解研究进行了体外评估,证明了 AM-NK-LS 具有强大的抗血栓功效。此外,出血和凝血时间研究表明靶向脂质体没有任何出血并发症。此外,使用多普勒流量计和超声/光声成像对 Sprague-Dawley (SD) 大鼠体内 FeCl 3 模型进行的体内实验表明,靶向脂质体对血栓部位的血栓溶解率增加且具有强大的亲和力。此外,体外血液相容性和组织病理学研究证明了纳米制剂的安全性和生物相容性。关键词:纳豆激酶、血栓溶解、纤维蛋白溶解、血栓靶向、光声成像
图3(a):荧光Cy5与N3功能化PPEGMA的共轭方案。(b)Cy5偶联细胞的CLSM显微照片。(c):酶结合的方案(例如β-gal)到PEGMA和随后的聚合。请注意,某些酶可能会偶联到一个以上的PPEGMA链中,从而有效地交联了聚合物。(d):β-GAL结合酵母的活动%(吸光度405 nm / OD 600)。(e):β-gal结合的酵母(YPL)孵育的β-gal偶联酵母。(f):与OG 25 mm一起孵育的β-gal偶联酵母的%OD 600。显示为SD的错误条,n = 3重复。**:p <0.01,***:p <0.001。比例尺:5 µm(PEGMA-N 3),10 µm(其他显微照片)。
与宫颈癌细胞增殖有关(Wu and Yang,2018;Lv and Guan,2018)。值得注意的是,与游离 CDDP 相比,CD59 抗体偶联制剂的细胞存活率明显降低。miR-1284 和 CDDP 的结合可对宫颈癌细胞产生协同抗癌作用。我们预计 miR-1284 可能会增加 HeLa 癌细胞的化学敏感性,从而导致增强的细胞杀伤效果。必须注意的是,CLSM 和流式细胞仪分析中观察到 CD/LP-miCDDP 的细胞存活率明显低于 LP-miCDDP,这是由于其细胞内化率较高。观察到 CDDP、LP-miCDDP 和 CD/LP-miCDDP 的 IC50 值分别为 12.4 µg/ml、7.23 µg/ml 和 3.12 µg/ml,与
9.3 土壤和地基考虑因素 ................................................................................................................ 32 9.3.1 对齐 ................................................................................................................................ 32 9.3.2 重铺、修复和重建 (3R) ................................................................................................ 33 9.3.3. 9.3.4 沉降...................................................................................................................................... 35 9.3.5 稳定性.............................................................................................................................. 39 9.3.6 路堤基础........................................................................................................................ 41 9.3.7 雨水管理及侵蚀和沉积物控制的岩土工程设计指南 ............................................................. 43 9.3.8 暗渠和边渠 ...................................................................................................................... 57 9.3.9 切坡...................................................................................................................................... 71 9.3.10 冻胀和巨石隆起 ................................................................................................................ 79 9.3.11 岩石开挖............................................................................................................................. 80 9.3.12 开挖、开挖防护和支护 ................................................................................................ 82 9.3.13 弃土设计9.3.14 可选借土区 ...................................................................................................................... 89 9.3.15 土工织物 ...................................................................................................................... 92 9.3.16 受控低强度材料 (CLSM) ................................................................................................ 96 9.3.17 轻质混凝土填料 ................................................................................................................ 99
本研究报告了一种前所未有的现象,具有相似结构的水溶性聚合物混合物(注 10)通过两个连续的 LLPS 事件以同心模式分离,即液相中的第一个 LLPS 和固液界面处的第二个 LLPS(图 2,顶部)。这种有趣的分离是通过使用高浓度的高离子强度盐(例如硫酸铵)实现的。 硫酸铵因其对水溶性生物聚合物的有效和非破坏性的盐析而闻名。研究小组在研究分子量(MW)为5,000Da的染料封端PEG存在下蛋白质的盐析行为时发现了PEG的同心分离现象。一般来说,蛋白质很难盐析,因此本实验采用了高浓度的硫酸铵。将此溶液滴到玻璃板上,用共聚焦激光扫描显微镜(CLSM)观察时,发现了意想不到的现象:玻璃表面形成了无数发出黄绿色荧光的环。
Figure 5 (Color online) (a) CLSM images of HepG-2 cells after incubation with TBPCP and TBCP (5 μM) under hypoxic conditions and two-photon irradiation (940 nm, 50 mW, 2 min) followed by staining with C11-BODIPY 581/591, Hoechst 33342, and Fer-1.对于C11-Bodipy 581/591:λEX= 561 nm; λEM= 570–620 nm。用于氧化的C11-Bodipy 581/591,λEX= 488 nm,λem= 500–530 nm。比例尺:10μm。(b)在深色和白光照射下用TBPCP和TBCP(5μM)处理的HEPG-2细胞的GSH水平(400-700 nm,200 mW/cm 2,10 min)。(c)在不同TBPCP处理的条件下,HEPG-2细胞中GPX4表达和GPX4的相对表达的蛋白质印迹分析。(d)在不同TBCP处理的条件下,HEPG-2细胞中GPX4表达和GPX4的相对表达的蛋白质印迹分析。误差线代表平均值±SD(每组n = 3), * p <0.05,** p <0.01,*** p <0.001。(e)TBPCP和TBCP处理的线粒体和核形态的生物-TEM(5μM)HEPG-2细胞在不同的处理后,比例尺:500 nm:500 nm。