最近,对不同深度神经网络(DNNS)架构的平行杂交模型的持续发展,越来越多的兴趣激增,以保持有用寿命(RUL)估计。在这方面,本文在文献中的第一次介绍了一种新的基于Hybrid DNN的框架,用于RUL估算,称为嘈杂的多径平行混合模型,用于剩余有用的寿命估计(NMPM)。提议的NMPM框架是三个平行路径的编写,第一个使用了一个嘈杂的双向长短术语记忆(BLSTM),用于提取时间特征并学习在两个方向,正向和后门中学习序列数据的依赖。第二个平行路径采用嘈杂的多层感知器(MLP),由三层组成以提取不同特征类别的层。第三个平行路径利用嘈杂的卷积神经网络(CNN)来提取特征的组成类。然后将三个平行路径的串联输出送入嘈杂的融合中心(NFC)以预测RLU。提出的NMPM已根据嘈杂的训练机制进行了培训,以增强其泛化行为,并增强模型的整体准确性和鲁棒性。使用NASA提供的CMAPS数据集对NMPM框架进行了测试和评估,该数据集说明了卓越的性能与最先进的对应物相比。
在预测和健康管理 (PHM) 中,从大量状态监测数据构建综合健康指标 (HI) 的任务起着至关重要的作用。HI 可能会影响剩余使用寿命 (RUL) 预测的准确性和可靠性,并最终影响系统退化状态的评估。大多数现有方法都先验地假设被研究机械的退化规律过于简单,这在实践中可能无法恰当地反映现实。特别是对于在随时间变化的外部条件下运行的复杂程度高的安全关键工程系统,退化标签不可用,因此监督方法不适用。为了解决上述推断 HI 值的挑战,我们提出了一种新的基于反因果关系的框架,通过从因果模型的影响中预测原因来降低模型复杂度。提出了两种用于推断结构因果模型的启发式方法。首先,从时间序列的复杂性估计中识别因果驱动因素,其次,通过 Granger 因果关系推断出一组效应测量参数。一旦知道了因果模型,离线反因果学习只需几个健康周期就能确保强大的泛化能力,从而有助于获得 HI 的稳健在线预测。我们在 NASA 的 N-CMAPSS 数据集上验证并比较了我们的框架,并与商用喷气式飞机上记录的实际运行条件进行了比较,这些条件用于进一步增强 CMAPSS 模拟模型。提出的具有反因果学习的框架优于现有的深度学习架构,将所有调查单元的平均均方根误差 (RMSE) 降低了近 65%。
在本论文中,我们提出了一种预测事件发生时间的新模型:威布尔事件时间 RNN。这是一个用于预测下一个事件发生时间的时间序列的简单框架,适用于我们遇到连续或离散时间、右删失、重复事件、时间模式、随时间变化的协变量或不同长度的时间序列中的任何一个或所有问题时。所有这些问题在客户流失、剩余使用寿命、故障、尖峰训练和事件预测中经常遇到。所提出的模型估计下一个事件发生时间的分布具有离散或连续威布尔分布,其参数是递归神经网络的输出。该模型使用生存分析中常用的特殊目标函数(删失数据的对数似然损失)进行训练。威布尔分布足够简单,可以避免稀疏性,并且可以轻松地进行正则化以避免过度拟合,但仍然具有足够的表现力来编码诸如增加、平稳或减少风险等概念,并且可以在允许的情况下收敛到点估计。预测的威布尔参数可用于预测下一个事件时间的预期值和分位数。它还导致未来风险的自然 2d 嵌入,可用于监控和探索性分析。我们使用通用的审查数据框架来描述 WTTE-RNN,该框架可以轻松地与其他分布一起扩展并适用于多变量预测。我们表明,常见的比例风险模型和威布尔加速故障时间模型是 WTTE-RNN 的特殊情况。所提出的模型在具有不同程度的审查和时间分辨率的模拟数据上进行了评估。我们将其与二元固定窗口预测模型和处理审查数据的简单方法进行了比较。该模型优于简单方法,并且被发现具有许多优势和与二元固定窗口 RNN 相当的性能,而无需指定窗口大小和在更多数据上进行训练的能力。应用于 CMAPSS 数据集以进行模拟喷气发动机的 PHM 运行至故障得到了有希望的结果。
在本文中,我们提出了一种预测事件发生时间的新模型:威布尔事件时间 RNN。这是一个用于预测下一个事件发生时间的时间序列的简单框架,适用于我们遇到连续或离散时间、右删失、重复事件、时间模式、随时间变化的协变量或不同长度的时间序列中的任何一个或所有问题。所有这些问题在客户流失、剩余使用寿命、故障、尖峰序列和事件预测中经常遇到。所提出的模型估计下一个事件发生时间的分布具有离散或连续威布尔分布,其参数是递归神经网络的输出。该模型使用生存分析中常用的特殊目标函数(删失数据的对数似然损失)进行训练。威布尔分布足够简单,可以避免稀疏性,并且可以轻松进行正则化以避免过度拟合,但仍然具有足够的表现力来编码诸如增加、平稳或减少风险之类的概念,并且如果允许的话可以收敛到点估计。预测的威布尔参数可用于预测下一个事件发生时间的预期值和分位数。它还会导致未来风险的自然 2d 嵌入,可用于监测和探索性分析。我们使用一个通用的删失数据框架来描述 WTTE-RNN,该框架可以轻松地与其他分布一起扩展并适用于多变量预测。我们表明,常见的比例风险模型和威布尔加速故障时间模型是 WTTE-RNN 的特殊情况。对具有不同程度删失和时间分辨率的模拟数据评估了所提出的模型。我们将它与二元固定窗口预测模型和处理删失数据的简单方法进行了比较。该模型优于简单方法,并且被发现具有许多优点和与二元固定窗口 RNN 相当的性能,而无需指定窗口大小和在更多数据上训练的能力。将 CMAPSS 数据集应用于模拟喷气发动机的 PHM 运行至故障得到了有希望的结果。