摘要 – 本文提出了一种用于 EEG 信号记录的 4 通道模拟前端 (AFE) 电路。对于 EEG 记录系统,AFE 可以处理各种传感器输入,具有高输入阻抗、可调增益、低噪声和宽带宽。缓冲器或电流-电压转换器块 (BCV) 可设置为缓冲器或电流-电压转换器电路,位于 AFE 的电极和主放大器级之间,以实现高输入阻抗并与传感器信号类型配合使用。斩波电容耦合仪表放大器 (CCIA) 位于 BCV 之后,作为 AFE 的主放大器级,以降低输入参考噪声并平衡整个 AFE 系统的阻抗。可编程增益放大器 (PGA) 是 AFE 的第三级,允许调整 AFE 的总增益。建议的 AFE 工作频率范围为 0.5 Hz 至 2 kHz,输入阻抗大于 2 T Ω,采用 180nm CMOS 工艺构建和仿真。AFE 具有最低 100 dB CMRR 和 1.8 µVrms 的低输入参考噪声,可实现低噪声效率。该设计采用了 BCV 等新功能来增强输入多样性,与之前的研究相比,IRN 和 CMRR 系数表现出显着增强。可以使用该 AFE 系统获取 EEG 信号,这对于检测癫痫和癫痫发作非常有用。
摘要 — 统计技术经常用于预测电子系统的性能。工艺变化考虑了制造时材料参数的不确定性,会对模拟集成电路的产量产生不利影响。对由于制造参数变化而导致的模拟电路关键输出参数变化进行统计分析,以预测产量,是模拟芯片制造中必不可少的步骤。在这项工作中,我们使用严格的统计方法来检查典型模拟电路的性能。我们设计了一个 65 nm 技术的两级 CMOS 差分放大器配置,使用 ACM 模型参数来检查工艺变化下的产量。我们采用三种不同的蒙特卡罗模型(均匀、高斯、最坏情况)来检查设计的 CMOS 差分放大器关键性能参数的统计变化。据报道,在典型工艺参数变化 10% 的情况下,关键差分放大器参数、最大增益、增益裕度和相位裕度都会发生变化。在最坏情况分布的情况下,变化最大,而在高斯分布的情况下,变化最小。结果表明,工艺变异对设计的CMOS差分放大器的成品率有显著影响。在高斯分布的情况下,增益裕度(dB)、相位裕度(度)和最大增益(dB)的标准差分别为11、25和24。
摘要 — 低温 CMOS 电路因其在量子计算、磁共振成像、粒子探测器和太空任务等领域的潜在应用而备受关注。这些电路在低于 77 K 直至接近绝对零度的温度下工作,由于深低温下可用的冷却功率有限,因此面临严格的功率限制。虽然低温操作可以大幅减少漏电流并提高晶体管效率,但优化低温 CMOS 电路以在冷却限制内最小化静态和动态功耗至关重要。在本文中,我们提出了一种低温感知技术映射方法来优化低温 CMOS 电路的功率特性。所提出的方法以技术独立的逻辑网络和低温标准单元库作为输入,并生成技术映射的门级网表,从而显着降低功耗。通过考虑低温下的静态和动态功率限制,与最先进的低温非感知算法相比,该方法可实现高达 26.89% 的平均功耗降低。这种优化使得基于大规模标准单元的数字电路能够在关键应用中的低温下高效运行。
因此,随着时钟速度的增加,需要更加间隔的多相时钟。常规的CMOS环振荡器已被普遍用于这些应用程序,因为它们由于高速操作和简单的结构而可以提供多相时钟信号。在常规环振荡器中,振荡频率取决于单个延迟之和的两倍的倒数。此外,传统环振荡器中的最小龙头间距不能小于两个逆变器延迟。在这里,我们必须添加更多的逆变器才能获得更多的输出阶段,从而降低了最大工作频率。要获得一个较小的间距,由一系列耦合环振荡器组成的阵列振荡器,可以将延迟分辨率延迟到逆变器延迟,从而提出了将逆变器延迟除以除以环的数量。因为该电路基于阵列结构,但是,多相输出的数量仅限于环中阶段的倍数。
在成像传感器中,有两种不同的噪声类别:与信号相关的噪声,这是撞击光子的函数,独立于传感器和与传感器相关的噪声。传感器噪声可以进一步分为固定的图案噪声,信号射击噪声和读取噪声。其中一些形式的噪声是时间噪声,各个时刻变化,而其他则是空间噪声,持续时间持续,但从像素到像素。可以通过传统的数据降低技术有效地减轻空间噪声,而诸如电子噪声之类的时间噪声很难有效减少。此外,CMOS传感器容易发生一种破坏性的时间噪声,称为随机电报信号噪声,也称为盐和胡椒噪声,这非常难以减轻,并且随着时间的推移而暴露于质子辐射,并且随着时间的流逝而大大增加。其他形式的噪声通常在开始时对传感器噪声概况的贡献很小的噪声也有望随着暴露而增加。本备忘录以简要讨论CMOS结构和体系结构,其中提出了负责生成噪声的主动像素CMOS传感器的特征和结构。下一节介绍了噪声的数学表示形式的简要概述。以下部分列出了CMOS噪声的分类8,并讨论了各种类型的噪声和创建它们的机制。下一节讨论了不同噪声源的综合效果。结论总结了仪器团队的主要兴趣点。以下部分Breifly介绍了辐射对噪声的影响,最后一部分涉及降低降噪技术。
*Corpsontding作者:Michele Ortolani,生命中心Nano&Neuro Science,意大利理工学院,Viale Regina Elena 291,00161,意大利罗马;和物理系“ Sapienza”罗马大学,Piazzale Aldo Moro 2,00185,意大利罗马,电子邮件:michele.ortolani@roma@roma1.infn.it。https://orcid.org/0000-0002-7203-5355 Elena运动,Enrico Talamas Simola,Gaspare的Luciana和大学科学系Monica de Seta;在罗马研究中,Viale G. Marconi 446,罗马00146,意大利,电子邮件:elena.campagna@uniroma3.it(E。竞选),Enrico.talamassimola@uniroma@uniroma@uniroma3.it(E。Talamas Simola)。https://orcid.org/0000-0001-7121-8806(E.广告系列)。 https://orcid.org/0000-0001-5468-6712(E. Talamas Simola)Tommaso Venanzi,意大利技术研究所,意大利技术研究所,Viale Regina Elena 291,00161 Rome,00161 ROME,00161 ROME,EMMAN,EMMAN:和莱昂内塔·巴尔达萨尔(Leonetta Baldassarre Technologiepark 25,Frankfurt,(Oder)15236,德国,电子邮件:Cedric.corley@esrf.fr Giuseppe Nicotra,微电子和微型系统研究所(CNR- IM)(CNR- IM),VIII STRADA 5,VIII STRADA 5,CATANIA 95121,ITALY GIOVAND GIOVANDIALY GIOVANCENT CAPINES,分校在罗马研究中,意大利罗马00146的Viale G. Marconi 446;和IHP-LeibnizInstitutFür创新的Mikroelelektronik,IM Technologiepark 25,Frankfurt(Oder)15236,德国Michele Michele Virgilio物理学部”,E。https://orcid.org/0000-0001-7121-8806(E.广告系列)。https://orcid.org/0000-0001-5468-6712(E. Talamas Simola)Tommaso Venanzi,意大利技术研究所,意大利技术研究所,Viale Regina Elena 291,00161 Rome,00161 ROME,00161 ROME,EMMAN,EMMAN:和莱昂内塔·巴尔达萨尔(Leonetta Baldassarre Technologiepark 25,Frankfurt,(Oder)15236,德国,电子邮件:Cedric.corley@esrf.fr Giuseppe Nicotra,微电子和微型系统研究所(CNR- IM)(CNR- IM),VIII STRADA 5,VIII STRADA 5,CATANIA 95121,ITALY GIOVAND GIOVANDIALY GIOVANCENT CAPINES,分校在罗马研究中,意大利罗马00146的Viale G. Marconi 446;和IHP-LeibnizInstitutFür创新的Mikroelelektronik,IM Technologiepark 25,Frankfurt(Oder)15236,德国Michele Michele Virgilio物理学部”,E。
* 通讯作者:Michele Ortolani,意大利理工学院生命纳米与神经科学中心,Viale Regina Elena 291,00161 罗马,意大利;以及罗马大学物理系,Piazzale Aldo Moro 2, 00185 Rome, Italy,电子邮件:michele.ortolani@roma1.infn.it。 https://orcid.org/0000-0002-7203-5355 Elena Campagna、Enrico Talamas Simola、Luciana Di Gaspare 和 Monica De Seta,大学科学系;罗马第三研究学院,Viale G. Marconi 446,罗马 00146,意大利,电子邮件:elena.campagna@uniroma3.it(E. Campagna),enrico.talamassimola@uniroma3.it(E. Talamas Simola)。 https://orcid.org/0000-0001-7121-8806(E. Campagna)。 https://orcid.org/0000-0001-5468-6712 (E. Talamas Simola) Tommaso Venanzi,意大利理工学院生命纳米与神经科学中心,Viale Regina Elena 291, 00161 罗马,意大利,电子邮件:tommaso.venanzi@uniroma1.it Fritz Berkmann 和 Leonetta Baldassarre,罗马大学物理系,Piazzale Aldo Moro 2, 00185 罗马,意大利,电子邮件:fritz.berkmann@uniroma1.it (F. Berkmann) Cedric Corley-Wiciak,IHP-Leibniz 创新微电子研究所,Im Technologiepark 25,法兰克福(奥得河畔)15236,德国,电子邮件:cedric.corley@esrf.fr Giuseppe Nicotra,微电子与微系统研究所(CNR- IMM),VIII Strada 5,卡塔尼亚 95121,意大利 Giovanni Capellini,大学科学系;罗马第三研究学院,Viale G. Marconi 446,罗马 00146,意大利;以及 IHP-Leibniz 创新微电子研究所,Im Technologiepark 25,法兰克福(奥得河畔)15236,德国 Michele Virgilio,物理学系“E.费米”,大学;比萨,Largo Pontecorvo 3,比萨 56127,意大利,电子邮件:michele.virgilio@unipi.it
* 通讯作者:Michele Ortolani,意大利理工学院生命纳米与神经科学中心,Viale Regina Elena 291,00161 罗马,意大利;以及罗马大学物理系,Piazzale Aldo Moro 2, 00185 Rome, Italy,电子邮件:michele.ortolani@roma1.infn.it。 https://orcid.org/0000-0002-7203-5355 Elena Campagna、Enrico Talamas Simola、Luciana Di Gaspare 和 Monica De Seta,大学科学系;罗马第三研究学院,Viale G. Marconi 446,罗马 00146,意大利,电子邮件:elena.campagna@uniroma3.it(E. Campagna),enrico.talamassimola@uniroma3.it(E. Talamas Simola)。 https://orcid.org/0000-0001-7121-8806(E. Campagna)。 https://orcid.org/0000-0001-5468-6712 (E. Talamas Simola) Tommaso Venanzi,意大利理工学院生命纳米与神经科学中心,Viale Regina Elena 291, 00161 罗马,意大利,电子邮件:tommaso.venanzi@uniroma1.it Fritz Berkmann 和 Leonetta Baldassarre,罗马大学物理系,Piazzale Aldo Moro 2, 00185 罗马,意大利,电子邮件:fritz.berkmann@uniroma1.it (F. Berkmann) Cedric Corley-Wiciak,IHP-Leibniz 创新微电子研究所,Im Technologiepark 25,法兰克福(奥得河畔)15236,德国,电子邮件:cedric.corley@esrf.fr Giuseppe Nicotra,微电子与微系统研究所(CNR- IMM),VIII Strada 5,卡塔尼亚 95121,意大利 Giovanni Capellini,大学科学系;罗马第三研究学院,Viale G. Marconi 446,罗马 00146,意大利;以及 IHP-Leibniz 创新微电子研究所,Im Technologiepark 25,法兰克福(奥得河畔)15236,德国 Michele Virgilio,物理学系“E.费米”,大学;比萨,Largo Pontecorvo 3,比萨 56127,意大利,电子邮件:michele.virgilio@unipi.it
准确的片上温度传感对于现代互补金属 - 氧化物 - 氧化通道(CMOS)集成电路(ICS)的最佳性能至关重要,可以在操作过程中理解和监测芯片周围局部加热。量子计算机的发展激发了对在深度低温温度下运行的IC的极大兴趣(通常为0.01 - 4 K),其中硅和氧化硅的疗法电导率降低以及有限的冷却功率预算使局部片上温度的温度变得更加重要。在这里,我们报告了CMOS工业制造工艺本质的片上温度测量方法的四种不同方法。这些包括二级和初级温度法和覆盖在室温下使用的常规温度计结构,以及利用在低温温度下出现的现象(例如超导性和COULOMB封锁)。我们将方法标记为温度的函数,并用它们来测量片上加热元件产生的局部过度温度。我们的结果证明了可以轻松地集成在CMOS芯片中的温度计方法,从Millikelvin范围到室温。