摘要——采用 CMOS 工艺实现的硅光子学已经改变了计算、通信、传感和成像领域。尽管硅是一种间接带隙材料,阻碍了高效发光,但在高压反向击穿雪崩模式下工作时在发射宽带可见光的硅 pn 结领域已经进行了大量研究。在这里,我们展示了在开放式代工厂微电子 CMOS 工艺 55BCDLite 中实现的正向偏置硅微发光二极管 (micro-LED) 的高亮度近红外 (NIR) 光发射,无需任何修改。在室温连续波操作下,对于直径为 4 µ m 的器件,在低于 2.5 V 的电压下,在中心波长为 1020 nm 处实现了超过 40 mW/cm 2 的外部发光强度。这是通过采用具有保护环设计的深垂直结来实现的,以确保载流子传输远离器件表面和非辐射复合通常占主导地位的材料界面。在这里,我们还展示了仅使用标准多模光纤和单片集成 CMOS 微型 LED 和探测器的完整芯片到芯片通信链路。
由于电信、医疗、计算机和消费电子等所有市场领域对便携式应用的更小尺寸和更长电池寿命的需求不断增长,低压低功耗硅片系统的发展趋势日益增长。运算放大器无疑是模拟电子电路中最有用的设备之一。运算放大器的构建复杂程度各不相同,可用于实现从简单的直流偏置生成到高速放大或滤波等功能。仅需少量外部元件,它就可以执行各种模拟信号处理任务。运算放大器是当今使用最广泛的电子设备之一,被用于各种消费、工业和科学设备中。运算放大器,通常称为运算放大器,是模拟电子电路中使用最广泛的构建模块之一。运算放大器是一种线性器件,它不仅具有理想直流放大所需的几乎所有特性,还广泛用于信号调节、滤波和执行数学运算,如加、减、积分、微分等。运算放大器通常是一个 3 端器件。它主要由一个反相输入端(在运算放大器符号中用负号(“-”)表示)和一个同相输入端(用正号(“+”)表示)组成。这两个输入端的阻抗都非常高。运算放大器的输出信号是两个输入信号之间的放大差,或者换句话说,是放大的差分输入。通常,运算放大器的输入级通常是差分放大器。运算放大器是一种具有相当高增益的直流耦合差分输入电压放大器。在大多数一般
本研究报告了一种面积高效、无电感、低噪声 CMOS 跨阻放大器的设计,适用于入门级光时域反射仪。本研究提出了一种新方法,用于在电容反馈 TIA 中实现可编程增益,使用输入级偏置阻抗和其中一个反馈电容器独立调整低频和高频行为。该方法解决了快速前馈或电阻反馈拓扑的典型噪声问题,同时缓解了关键 TIA 性能指标的权衡。提出了一种更精确的放大器模型,该模型考虑了电容隔离和两个偏置电路的影响。建议对参考设计进行进一步修改,包括基于 PMOS 的偏置电路实现,以解决电压余量问题。该电路采用标准 180 nm CMOS 工艺实现,采用 1.8 V 电源供电,电流为 11.7 mA。
《模拟电路与信号处理》丛书,前身为《Kluwer 国际工程与计算机科学丛书》,是一套高水准的学术专业丛书,出版有关模拟集成电路和信号处理电路与系统的设计和应用的研究成果。通常每年我们会出版 5-15 本研究专著、专业书籍、手册和编辑本段,分发给世界各地的工程师、研究人员、教育工作者和图书馆。该丛书促进并加快了模拟领域新研究成果和教程观点的传播。全球范围内,该领域开展着大量令人兴奋的研究活动。研究人员正努力通过改进模拟功能来弥合传统模拟工作与超大规模集成 (VLSI) 技术的最新进展之间的差距。模拟 VLSI 已被公认为未来信息处理的主要技术。模拟工作正在显示出巨大变化的迹象,重点是结合设备/电路/技术问题的跨学科研究工作。因此,新的设计概念、策略和设计工具正在被揭示。感兴趣的主题包括:模拟接口电路和系统;数据转换器;有源 RC、开关电容和连续时间集成滤波器;混合模拟/数字 VLSI;仿真和建模、混合模式仿真;模拟非线性和计算电路和信号处理;模拟神经网络/人工智能;电流模式信号处理;计算机辅助设计 (CAD) 工具;新兴技术中的模拟设计 (可扩展 CMOS、BiCMOS、GaAs、异质结和浮栅技术等);模拟测试设计;集成传感器和执行器;模拟设计自动化/基于知识的系统;模拟 VLSI 单元库;模拟产品开发;射频前端、无线通信和微波电路;模拟行为建模、模拟 HDL。
印度安得拉邦蒂鲁帕蒂 Sri Venkateswara 工程学院电子与计算机系摘要:运算放大器电路用于计算、仪器仪表和其他应用。以前用于仪器仪表的精密运算放大器如今被用于工业和汽车应用。因此,总是需要更高精度的运算放大器。它应该在很宽的温度范围内工作。如今,由于行业趋势是应用标准工艺技术在同一芯片上实现模拟电路和数字电路,互补金属氧化物半导体 (CMOS) 技术已经取代双极技术成为混合信号系统中模拟电路设计的主导技术。两级运算放大器是最常用的运算放大器架构之一。本文介绍了一种基于 CMOS 的运算放大器,其输入取决于其偏置电流,偏置电流为 20µA,采用 180nm 和 90nm 技术设计。在亚阈值区域,由于 MOS 晶体管的独特行为,设计人员不仅可以在低电压下工作,还可以在低输入偏置电流下工作。大多数 CMOS 运算放大器都是为特定的片上应用而设计的,只需要驱动几 pf 的电容负载。在本提案中,介绍了两级全差分 CMOS 运算放大器的设计,并针对各种参数在 180nm 和 90nm 技术中进行了模拟。模拟将使用 Cadence Virtuoso Tool 进行。
1个新加坡639798 Nanyang Ave 639798的Nanyang Technological University,Nanyang Technological University的电气和电子工程学院微型和纳米电子和电子工程学院(CMNE); chunfei001@e.ntu.edu.sg(c.f.s.); e190013@ntu.edu.sg(l.y.x.l.); chongwei@ntu.edu.sg(c.w.t.); lxhu@ntu.edu.sg(L.H.); tancs@ntu.edu.sg(c.s.t.)2 CNRS-NTU-THALES研究联盟/UMI 3288,研究技术广场,50 Nanyang Ave,边界X块,6级,新加坡637553,新加坡; jxwang@ntu.edu.sg(J.W.); simon.goh@ntu.edu.sg(s.c.k.g.); philippe.coquet@cnrs.fr(p.c.); ehongli@ntu.edu.sg(H.L.)3 Institut d'Electronique, de Micro Electronique et de Nanotechnologie (IEMN), CNRS UMR 8520-Universit é de Lille, 59650 Villeneuve d'Ascq, France 4 School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Ave, Singapore 639798, Singapore * Correspondence: ebktay@ntu.edu.sg†两位作者对此手稿都同样贡献。
I。300-GHz带具有高速数据通信[1],[2],[3],[4],[5]的巨大潜力。随着2017年IEEE 802.15.3d标准的创建,用于从252至322 GHz的无牌频带中运行的无线电[6],现在对开发Ter-Ahertz(THZ)收发器的兴趣更高。此外,许多研究人员已经证明了这种无线电在CMOS技术中的生存能力[3],[4],[5],[7],[8],[8],[9],[10],[11],[11],[12],描绘了一个有希望的未来。我们应该指出,这些示例在140 [8]至650 MW [9]之间消耗,并使用片外局部振荡器(LO)信号产生。在本文中,我们认为THZ数据通信无线电的可行性取决于其功耗。然后,我们提出一个绘制52 MW的单芯片接收器(RX)和LO Generator。该原型已在28 nm CMOS技术中制造,并占据了0.06 mm 2的活性面积。第二节涉及与THZ RX设计有关的一般问题,第三部分描述了拟议的RX体系结构。
提出了一种采用 180 nm CMOS 工艺的上变频混频器。本研究详细阐述了几种混频器的类型、混频器的性能参数、混频器的拓扑结构以及提高混频器性能的设计技术。主要目的是提高增益、增加线性度和噪声系数。有四种金属层可供设计。对以前发表的研究进行了比较,并提出了低功耗混频器的最佳拓扑结构。关键词:混频器,噪声系数,变频增益,CMOS 1. 简介超宽带 (UWB) 系统是无线通信的主要技术之一。混频器是将 RF 信号转换为基带信号的关键。混频器是 RF 通信系统中最重要的元件之一。当两个不同的输入频率插入另外两个端口时,它被设计为在单个输出端口产生和频和差频。插入两个输入端口的两个信号通常是本振信号和输入(对于接收器)或输出(对于发射器)信号。要产生新频率(或新频率),需要非线性设备。射频混频器本质上是一种将信号从一个频率移到另一个频率的设备。混频器产生输入频率、LO 频率及其互调产物的谐波。这些谐波增加了混频器的非线性。设计混频器的基本目标是抑制谐波。理想的混频器是一个乘法器电路。理想的混频器将一个载波频率周围的调制转换到另一个载波频率。由于混频器是一种非线性设备,因此它无法执行频率转换。
电感器是一种具有频率相关阻抗特性的电气元件;电感器在低频时表现出低阻抗,在高频时表现出高阻抗。虽然“理想”运算放大器输出阻抗特性为零,但“实际”放大器的输出阻抗是电感性的,并且像电感器一样随着频率的增加而增加。EL5157 的输出阻抗如图 2 所示。使用运算放大器的应用中的一个常见挑战是驱动电容负载。之所以有挑战性,是因为运算放大器的电感输出与电容负载一起形成 LC 谐振槽拓扑,其中电容负载电抗与电感驱动阻抗一起导致当反馈围绕环路闭合时产生额外的相位滞后。降低相位裕度会导致放大器振荡的可能性。振荡时,放大器会变得非常热,并且可能会自毁。针对这一挑战,有几个非常著名的解决方案。1) 最简单的解决方案是在输出端串联一个电阻,以强制反馈来自放大器的直接输出,同时隔离无功负载。这种方法的代价是牺牲负载上少量的输出电压摆幅。2) 另一个直接的解决方案是应用“缓冲网络”。缓冲网络是一个与电容负载并联的电阻和电容,在负载上提供电阻阻抗以减少输出相移;提供额外的稳定性。