电容性微机械超声传感器(CMUT)技术在过去十年中一直在迅速发展。在制造和集成方面的进步,再加上改进的建模,使CMUT能够进入主流超声成像。与常规技术相比,CMUT超声传感器传达了许多优势,例如大带宽和效率[1],[2],易于制造大型阵列和较低的成本。CMUT是一种高电场设备,通过通过充电和分解等问题来控制高电场,可以具有具有优越的带宽和敏感性的超声传感器,可以与电子设备集成并使用传统的集成电路制造技术制造,并具有所有优势。可以使CMUT设备灵活地包裹在圆柱体甚至人体组织上,并且由于使用Su-8 [3],[4],[8]或Polyirimide [5],[8],所有这些都可能使所有这些可能。在本文中,我们介绍了两种具有基本重要性的电介质材料的电气表征,以制造具有提及的特征的设备:氧化硅(SIO 2)在电荷注入和击穿方面对高电场具有出色的响应,以及具有优化且具有优化结构和
入院、出院、转院 (ADT) 系统 一种患者管理系统,包含重要的身份信息,包括全名、出生日期、病历号和联系信息。此信息可与超声机器工作列表或中间件应用程序共享。ADT 可用于为 POCUS 研究创建基于遭遇的订购工作流系统。电容式微机械超声换能器 (CMUT) 一种将电能转换为超声波的微电子机械系统。与传统的压电换能器相比,CMUT 利用电容变化来产生声波并接收返回的回声。CMUT 的生产成本更低,在探头内占用的物理空间更少,并且比压电换能器具有更大的分数带宽。计算机化医嘱录入 (CPOE) 一种允许用户输入与 EMR、RIS、药房和 POCUS 中间件通信的医嘱的应用程序。CPOE 可用于为 POCUS 研究创建基于医嘱的工作流。
摘要 人们对利用超声 (US) 换能器进行非侵入性神经调节治疗,包括低强度经颅聚焦超声刺激 (tFUS) 的兴趣迅速增长。用于 tFUS 的最广泛展示的超声换能器是体压电换能器或电容式微机械换能器 (CMUT),它们需要高压激励才能工作。为了推动超声换能器向小型便携式设备的发展,以便大规模安全地进行 tFUS,人们对具有光束聚焦和控制能力的低压超声换能器阵列很感兴趣。这项工作介绍了使用 1.5 µ m 厚的 Pb(Zr 0.52 Ti 0.48)O3 薄膜(掺杂 2 mol% Nb)的 32 元件相控阵压电微机械超声换能器 (PMUT) 的设计方法、制造和特性。电极/压电/电极堆栈沉积在绝缘体上硅 (SOI) 晶片上,硅器件层厚度为 2 µ m,用作弯曲模式振动的被动弹性层。制造的 32 元件 PMUT 的中心频率为 1.4 MHz。演示了超声波束聚焦和控制(通过波束成形),其中阵列由 14.6 V 方波单极脉冲驱动。PMUT 在焦距为 20 mm 时产生的最大峰峰值聚焦声压输出为 0.44 MPa,轴向和横向分辨率分别为 9.2 mm 和 1 mm。最大压力相当于 1.29 W/cm 2 的空间峰值脉冲平均强度,适用于 tFUS 应用。
[1] MILLER DL, SMITH NB, BAILEY MR 等。治疗性超声应用和安全注意事项概述[J]。超声医学杂志,2012,31 (4): 623-634。[2] WANG J, ZHENG Z, CHAN J 等。用于血管内超声成像的电容式微机械超声换能器[J]。微系统纳米工程,2020,6 (1): 73。[3] JIANG X, TANG HY, LU Y 等。基于与 CMOS 电路键合的 PMUT 阵列的发射波束成形超声指纹传感器[J]。IEEE 超声铁电频率控制学报,2017,PP (9): 1-1。[4] CHEN X, XU J, CHEN H 等。利用多频连续波的 pMUT 阵列实现高精度超声测距仪[J]。微机电系统,2019 年。[5] CABRERA-MUNOZ NE、ELIAHOO P、WODNICKI R 等人。微型 15 MHz 侧视相控阵换能器导管的制造和特性[J]。IEEE 超声铁电和频率控制学报,2019 年:1-1。[6] LU Y、HEIDARI A、SHELTON S 等人。用于血管内超声成像的高频压电微机械超声换能器阵列[S]。IEEE 微机电系统国际会议;2014 年。[7] ZAMORA I、LEDESMA E、URANGA A 等人。用于成像应用的具有 +17 dB SNR 的单片 PMUT-on-CMOS 超声系统[J]。 IEEE Access,2020,页(99):1-1。[8] JUNG J,LEE W,KANG W 等。压电微机械超声换能器及其应用综述[J]。微机械与微工程杂志,2017,27 (11):113001。[9] BERG S,RONNEKLEIV A。5F-5通过引入有损顶层降低CMUT阵列中膜之间的流体耦合串扰[S]。超声波研讨会;2012年。[10] LARSON J D。相控阵换能器中的非理想辐射器[S]。IEEE;1981年。[11] NISTORICA C、LATEV D、SANO T 等。宽带宽、高灵敏度的高频压电微机械换能器[S]。 2019 IEEE 国际超声波研讨会(IUS);2019: 1088-1091。[12] 何丽梅,徐文江,刘文江等。基于三维有限元仿真的二维阵列压电微机械超声换能器性能和串扰评估[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[13] PIROUZ A、MAGRUDER R、HARVEY G 等。基于 FEA 和云 HPC 的大型 PMUT 阵列串扰研究[S]。2019 IEEE 国际超声波研讨会(IUS);2019。[14] DZIEWIERZ J、RAMADAS SN、GACHAGAN A 等。一种用于NDE应用的包含六边形元件和三角形切割压电复合材料子结构的2D超声波阵列设计[S]。超声波研讨会;2009年。[15]徐婷,赵玲,姜哲,等。低串扰、高阻抗的压电微机械超声换能器阵列设计