(a) (b) 图 4. (a) 无肿瘤的 Flair 切片示例。上半部分和下半部分的 SSIM 值为 0.308。 (b) 有肿瘤的 Flair 切片示例。上半部分和下半部分的图案不相互镜像。其 SSIM 值为 0.174。
摘要 明尼苏达大学的研究人员率先提出了脑控无人机的概念,并由此引发了一系列研究。这些早期的努力为更先进的脑控无人机原型奠定了基础。然而,由于 BCI 信号具有非平稳性和高维性,因此本质上非常复杂。因此,仔细考虑特征提取和分类过程至关重要。本研究引入了一种新方法,将预训练的 CNN 与经典神经网络分类器和 STFT 频谱相结合,形成多层 CNN 模型 (MTCNN)。MTCNN 模型用于解码两类运动想象 (MI) 信号,从而实现对无人机上下运动的控制。本研究的实验阶段涉及四个关键实验。第一个实验使用大量数据集评估了 MTCNN 模型的性能,分类准确率高达 99.1%。第二个和第三个实验针对同一受试者在两个不同的数据集上评估了该模型,成功解决了与受试者间和受试者内差异相关的挑战。 MTCNN 模型在两个数据集上都实现了 99.7% 的出色分类准确率。在第四次实验中,该模型在另一个数据集上进行了验证,实现了 100% 和 99.6% 的分类准确率。值得注意的是,MTCNN 模型在两个 BCI 竞赛数据集上的准确率超过了现有文献。总之,MTCNN 模型展示了其解码与左手和右手运动相关的 MI 信号的潜力,为脑控无人机领域提供了有希望的应用,特别是在控制上下运动方面。此外,MTCNN 模型有可能通过促进该模型与基于 MI 的无人机控制系统的集成,为 BCI-MI 社区做出重大贡献。
人工智能属于科学的领域,该领域与设计机器可以自行学习而不会受到任何人的干扰的想法。由于ML,人类可以设计像人类一样思考的机器,并且可以从人类这样的经验中学习。我们今天看到的许多实践示例,例如解决各种优化并发症,对大量数字化数据进行分类并获得所需模式,根据自然语言处理和深度学习。更多的层和模型的存在更深,那么整体性能将更高。不同的深度学习算法是多层前ePtron神经网络,卷积神经网络,经常性神经网络,长期短期记忆,深玻尔兹曼机器(DBM),深信信念网络,可在顺序数据(信号和文本),复发性神经网络上起作用。现在,超级计算机已广泛用于编辑和分析给定患者的图像并使用图像,它通过使用卷积神经网络更改维度并分析用户给定的输入。此卷积神经网络通过使用不同的数据集并将图像压缩到计算机格式,从而可以通过人工智能处理数据并使用不同的层(例如
在线端到端脑电图(EEG)具有高性能的分类可以评估严重抑郁症患者(MDD)患者的大脑状况(MDD),并在及时跟踪其发育状况,以最大程度地减少陷入危险和自杀的风险。但是,由于(1)嵌入式密集的噪声以及由大脑状态的进化确定的内在非平稳性,这仍然是一项巨大的研究挑战,(2)在脑部疾病攻击过程中缺乏有效的神经网络与脑状态之间复杂关系的脱钩。这项研究设计了基于频道的卷积神经网络(CNN),即FCCNN,以准确而快速地识别抑郁症,这将脑部节律融合到分类器的注意机制中,旨在将数据的最重要部分集中在数据中最重要的部分并改善分类效果。此外,为了了解分类器的复杂性,本研究提出了一种基于高性繁殖(AP)聚类分区的信息熵的计算方法,以衡量在每个通道或大脑区域上作用的分类器的复杂性。我们在抑郁评估上进行实验,以识别健康和MDD。结果报告说,所提出的解决方案可以识别MDD的精度为99±0.08%,灵敏度为99.07±0.05%,而特定率为98.90±0.14%。此外,关于FCCNN的定量解释的实验说明了抑郁症患者的额叶,左和右颞叶与健康对照组之间的显着差异。
脑瘤是最危险和最具破坏性的疾病之一。晚期脑癌的死亡率更高。此外,脑瘤的误诊会产生危险并降低患者的生存机会。脑瘤的早期诊断有助于通过提供正确的治疗来挽救患者的生命。磁共振成像 (MRI) 和计算机断层扫描 (CT) 等计算机辅助医学成像技术有助于诊断疾病。因此,近年来,脑 MRI 分类成为一个活跃的研究领域。早期已经提出了许多用于 MRI 分类的方法,从经典方法到先进的深度学习 (DL) 算法,例如卷积神经网络 (CNN)。传统的机器学习 (ML) 技术需要手工制作的特征,而 CNN 通过卷积和池化层的参数调整直接从未处理的图像中提取特征来进行分类。使用 CNN 算法的特征提取主要受训练过程图像大小的影响。如果训练数据集大小较小,CNN 模型在某个时期后会过度拟合。因此,迁移学习技术得到了发展。在所提出的系统中,使用五种迁移学习架构(例如 AlexNet、Vgg16、ResNet18、ResNet50 和 GoogLeNet)进行五项研究,将脑 MRI 的临床数据集分类为良性和恶性。在脑 MRI 上应用数据增强技术来推广结果并减少过度拟合的可能性。在这个提出的系统中,经过微调的 AlexNet 架构分别实现了最高的精度、召回率和 f 测量值 0.937、1 和 0.96774。
摘要 目的。已提出了用于基于脑电图 (EEG) 的脑机接口 (BCI) 的多个卷积神经网络 (CNN) 分类器。然而,研究发现,CNN 模型容易受到通用对抗性扰动 (UAP) 的攻击,这些扰动很小且与示例无关,但当添加到良性示例中时,其威力足以降低 CNN 模型的性能。方法。本文提出了一种新颖的总损失最小化 (TLM) 方法来生成基于 EEG 的 BCI 的 UAP。主要结果。实验结果证明了 TLM 对三种流行的 CNN 分类器针对目标攻击和非目标攻击的有效性。我们还验证了 UAP 在基于 EEG 的 BCI 系统中的可迁移性。意义。据我们所知,这是首次对基于 EEG 的 BCI 中 CNN 分类器的 UAP 进行研究。UAP 易于构建,并且可以实时攻击 BCI,从而暴露出 BCI 的一个潜在的关键安全问题。
摘要 — 在硬件加速器上运行大型深度神经网络 (DNN) 所消耗的能量主要来自需要大量快速内存来存储状态和权重。目前,只有通过 DRAM 才能经济地满足这种大型内存需求。尽管 DRAM 是高吞吐量和低成本内存(成本比 SRAM 低 20 倍),但其较长的随机访问延迟不利于脉冲神经网络 (SNN) 中不可预测的访问模式。此外,从 DRAM 访问数据比使用该数据进行算术运算消耗的能量高出几个数量级。如果有本地内存可用且产生的峰值很少,则 SNN 是节能的。本文报告了我们在过去 5 年中在卷积和循环深度神经网络硬件加速器方面的发展,这些加速器利用了与 SNN 类似的空间或时间稀疏性,但即使使用 DRAM 来存储大型 DNN 的权重和状态,也能实现 SOA 吞吐量、功率效率和延迟。
Oh, S. L.、Ng, E. Y. K.、Tan, R. S. 和 Acharya, U. R. (2018)。使用 CNN 和 LSTM 技术结合可变长度心跳自动诊断心律失常。计算机在生物学和医学中的应用,102,278-287。doi:10.1016/j.compbiomed.2018.06.002
摘要 - 股票市场预测是金融内部极具吸引力和流行的领域,这是由于由于数据非线性和复杂的经济原则而产生的大量利润的潜力。从交易数据中提取功能在该领域至关重要,并且已经制定了许多策略。其中,由于其强大的数据处理能力,深度学习在财务应用中取得了令人印象深刻的成果。在我们的研究中,我们提出了一个混合深度学习模型CNN-LSTM,该模型结合了2D卷积神经网络(CNN),用于图像处理与长期短期记忆(LSTM)网络,用于管理图像序列和分类。,我们将21个技术指标的前15个从财务时间序列转换为15x15图像,在21个不同的日期中。然后将每个图像分为卖出,持有或根据交易数据进行分类。我们的模型表明,股票预测的表现优于其他深度学习模型。
单眼深度估计是计算机视觉中的持续挑战。变压器模型的最新进展证明了与该领域的召开CNN相比,具有显着的优势。但是,了解这些模型如何优先考虑2D图像中不同区域的优先级以及这些区域如何影响深度估计性能。探索变压器和CNN之间的差异,我们采用了稀疏的像素方法对比分析两者之间的区别。我们的发现表明,尽管变形金刚在处理全球环境和错综复杂的特征方面表现出色,但它们在保留深度梯度连续性方面落后于CNN。为了进一步增强在单眼深度估计中的变压器模型的性能,我们提出了深度梯度改进(DGR)模块,该模块通过高阶分化,特征融合和重新校准来完善深度估计。此外,我们利用最佳运输理论,将深度图视为空间概率分布,并采用最佳传输距离作为损失函数来优化我们的模型。实验结果表明,与插件深度梯度改进(DGR)模块集成的模型以及所提出的损失函数可增强性能,而无需增加室外Kitti和室内NYU-DEPTH-V2数据集的复杂性和计算成本。这项研究不仅提供了深入估计转换器和CNN之间区别的新见解,而且还为新颖的深度估计方法铺平了道路。