卷积神经网络(CNN)受到灵长类动物视觉系统的组织的启发,进而成为视觉皮层的有效模型,从而可以准确预测神经刺激反应。虽然对与大脑相关的对象识别任务进行培训可能是预测大脑活动的重要前提,但CNN的大脑样结构可能已经允许准确预测神经活动。在这里,我们在预测视觉皮层的神经反应方面评估了任务精制和脑部优化的卷积神经网络(CNN)的性能,并进行了系统的架构操作以及受过训练的和未经训练的特征提取器之间的比较,以揭示关键的结构组件影响模型性能。对于人类和猴子区域V1,采用RELU激活函数的随机重量CNN与平均或最大池的结合,显着超过了其他激活函数。随机体重CNN在预测V1响应时与训练有素的对应物相匹配。可以预测V1响应的程度与神经网络的复杂性密切相关,这反映了神经激活功能和汇总操作的非线性。但是,对于与物体识别(例如IT)相关的较高视觉区域,编码性能与复杂性之间的这种相关性显着弱。测试视觉区域之间的这种差异是否反映了功能差异,我们在纹理歧视和对象识别任务上训练了神经网络模型。与我们的假设一致,模型的复杂性与纹理歧视的性能更加密切,而不是对象识别。我们的发现表明,具有足够模型复杂性的随机重量CNN允许将V1活动视为训练有素的CNN,而较高的视觉区域则需要通过梯度下降通过训练获得的精确重量配置。
探地雷达 (GPR) 是一种成像系统,可用于观察现场地下情况,以研究土壤的层组成或埋藏物体的存在。由于地面的电磁特性,此类图像通常具有非常低的信噪比 (SNR)。此外,根据设计,埋藏物体被观察为双曲线,其形状可能与物体类型(例如空腔或管道)相关联。在这种情况下,埋藏物体的分类在民用应用中非常重要,例如恢复埋藏天然气管道的位置 [1] 或军事应用,例如地雷探测 [2]。为了进行这种识别,一些研究考虑使用信号反演技术 [3] 来提高 SNR,以便地球物理学家进行手动解释。当需要处理大量图像时,这种解决方案可能不切实际,因为它需要专门的人力资源。因此,自动识别方法已成为必需,并受到社区的关注。GPR 信号的自动分类分两步进行。首先,感兴趣区域(ROI)对应于
脑计算机界面(BCIS)可以分为两种主要类型:主动和被动BCI(Clerc等人2016)。当系统使用用户非自愿生成的信号时,BCI可以被动。更具体地说,这种类型的BCI经常用于评估执行不同心理需求的各种任务的用户的心理工作量,尤其是脑电图(EEG)(EEG)(Wang等人。2015,Adryou等。2018,Shalchy等。 2020)。 在大多数情况下,这些系统是使用分类器构建的,该分类器将大脑信号分为不同类别。 这取决于事先收集了标记的数据。 但是,这些系统通常是在火车和测试集都具有已知标签的实验室环境中开发的。 为神经经济学的2021会议组织的“大挑战:被动BCI Hackathon”可以通过被动BCI的真实情况来挑战研究人员:从看不见的会话中分类数据,并掩盖了标签,以防止在测试集中进行任何细微的调谐。 为此挑战提供的数据集(Hinss等人 2021)由15个参与者的脑电图记录组成,这些参与者在3个不同的会议中进行了3个不同的会议,由NASA开发的多属性任务电池II(MATB-II)。 每个会话都在不同的困难的块中分解:简单,中和困难。 提供的数据包括来自这些块的2秒钟(采样频率为250 Hz),每个会话总共447个时代和每个参与者。2018,Shalchy等。2020)。在大多数情况下,这些系统是使用分类器构建的,该分类器将大脑信号分为不同类别。这取决于事先收集了标记的数据。但是,这些系统通常是在火车和测试集都具有已知标签的实验室环境中开发的。为神经经济学的2021会议组织的“大挑战:被动BCI Hackathon”可以通过被动BCI的真实情况来挑战研究人员:从看不见的会话中分类数据,并掩盖了标签,以防止在测试集中进行任何细微的调谐。为此挑战提供的数据集(Hinss等人2021)由15个参与者的脑电图记录组成,这些参与者在3个不同的会议中进行了3个不同的会议,由NASA开发的多属性任务电池II(MATB-II)。每个会话都在不同的困难的块中分解:简单,中和困难。提供的数据包括来自这些块的2秒钟(采样频率为250 Hz),每个会话总共447个时代和每个参与者。难度标签仅在两个初次会议上提供。
摘要:图表图像分类是自动化数据提取和从可视化的解释的关键任务,这些任务被广泛用于业务,研究和教育等领域。在本文中,我们评估了卷积神经网络(CNN)和视觉模型(VLM)的性能,鉴于它们在各种图像分类和理解任务中的使用越来越多。,我们构建了25种图表类型的不同数据集,每个数据集包含1,000张图像,并培训了多个CNN体系结构,同时还评估了预训练的VLM的零拍概括能力。我们的结果表明,在经过专门用于图表分类的培训时,CNN胜过VLM,尽管如此,它仍显示出有希望的潜力,而无需特定于任务的培训。这些发现强调了CNN在图表分类中的重要性,同时突出了VLM的进一步微调的未开发潜力,这对于推进自动数据可视化分析至关重要。
摘要 - 该纸张利用机器学习算法来预测和分析财务时间序列。该过程始于一个deno的自动编码器,以从主合同价格数据中滤除随机噪声波动。然后,一维卷积会降低过滤数据的维度并提取关键信息。被过滤和降低的价格数据被馈送到GAN网络中,其输出作为完全连接的网络的输入。通过交叉验证,训练了模型以捕获价格波动之前的功能。该模型预测了实时价格序列的重大价格变化的可能性和方向,将交易置于高预测准确性的时刻。经验结果表明,使用自动编码器和卷积来过滤和DENOSIS财务数据,结合gan,实现一定程度的预测性能,验证了机器学习算法的能力,以发现财务序列中的基本模式。
摘要 - X射线血管造影中冠状动脉片段和狭窄的冠状动脉片段和狭窄的检测和诊断至关重要,但是,原始图像中图像质量的变化,噪声和伪影造成了当前算法的明确困难。这些问题通过传统方法对有意义的分析构成了挑战,这损害了检测算法的效率。为了克服这些缺点,当前的研究提出了一种新的集成深度学习技术,该技术将深度卷积神经网络(DCNN)与双重条件检测中的生成对抗网络(GAN)相结合。从X射线血管造影图像中提取的详细特征学习是通过DCNN进行的,其中考虑了血管结构和自动病理区域的检测。gan的使用是用合成图像,扭曲和视觉噪声进一步丰富数据集,这将使模型更容易受到各种图像条件的影响。两种方法都将有助于更好地分类正常和病理区域,并且对所获得图像的质量的敏感性降低。因此,提出的方法显示了诊断准确性的提高,作为心血管系统临床决策的坚实基础。已通过以下评估指标证明了建议方法的功效:97.9%的F1得分,98.7%的精度,98.2%的精度和98%的召回率。它通过在困难的成像环境中提供更好的结果来揭示了使用算法进行心血管评估的决定性进步。与传统方法相比,结果证明了牙菌斑和狭窄识别的更高灵敏度和准确性,这证实了使用建议的DCNN-GAN方法来考虑医学成像中实际波动的效率。
从医学图像(尤其是 MRI 扫描)中对脑肿瘤进行分类对于及时诊断和治疗至关重要。深度学习模型的发展彻底改变了医学图像分析,使高精度的自动分类成为可能。然而,许多现有模型存在过度拟合、训练效率低下以及对新数据集的泛化能力差等问题。在这项工作中,我们引入了 Shree-L1,这是一种专为脑肿瘤分类而定制的动态卷积神经网络 (CNN) 架构。Shree-L1 结合了创新的降尺度和升尺度块,可有效提取复杂特征,同时通过 dropout 等正则化技术防止过度拟合。我们使用公开的脑肿瘤数据集证明了这种方法的有效性,为医学成像中的肿瘤分类提供了一种强大的解决方案。
摘要 - 基于卷积神经网络(CNN)的深度学习方法显示,基于成像数据,基于成像数据的痴呆症的早期和准确诊断的早期和准确诊断都很大。但是,这些方法尚未在临床实践中被广泛采用,这可能是由于深度学习模型的解释性有限。可解释的提升机(EBM)是玻璃框模型,但无法直接从输入成像数据中学习功能。在这项研究中,我们提出了一个可解释的新型模型,该模型结合了CNN和EBM,以诊断和预测AD。我们制定了一种创新的培训策略,该策略将CNN组件作为功能提取器和EBM组件作为输出块而交替训练CNN组件,以形成端到端模型。该模型将成像数据作为输入,并提供预测和可解释的特征重要性度量。我们验证了有关阿尔茨海默氏病神经影像学计划(ADNI)数据集的拟议模型,以及Health-Ri Parelsnoer神经疾病生成疾病生物库(PND)作为外部测试集。所提出的模型以AD和对照分类为0.956的面积为0.956,预测轻度认知障碍(MCI)在ADNI队列上进行AD的预测为0.694。所提出的模型是与其他最先进的黑盒模型相当的玻璃盒模型。我们的代码可在以下网址提供:https://anonymon.4open.science/r/gl-icnn。索引术语 - Alzheimer氏病,MRI,深度学习,转换神经网络,可解释的提升机器,明显的人工智能
PBOB KCNN4-EGFP F2 5'AACCCAGCCAGCAGTCCAAGATGGTGAGCAAGG GCGAGGAGCTGT 3' PBOB KCNN4-EGFP R2 5'CTACTTGTACAGCTCGTCCATGCCG 3' pBOB-jGCaMP7s-F 5'ATGGGTTCTCATCATCATCATC 3' pBOB-jGCaMP7s-R 5'TTACTTCGCTGTCACTATTG TACA 3'mNlrp3 R258W-F 5'TATCCACTGCTGGGAGGTGAGCCTC 3' mNlrp3 R258W-R 5'GAGGCTCACCTCCCAGCAGTGGATA 3' mNlrp3 D301N-F 5'TGGATGGCTTTAATGAGCTACAAGG 3' mNlrp3 D301N-R 5'CCTTGTAGCTCATTAAAGCCATCCA 3' mNlrp3 T 346M-F 5'CTGCTCATAACGATGAGGGCCGGTAG 3' mNlrp3 T346M-R 5'CTACCGGCCTCATCGTTATGAGCAG 3' 409
心脏病占全球死亡人数的30%。早期干预和心血管异常的检测可以预防这种死亡。当前的研究提出了一种新的方法,该方法将卷积神经网络(CNN)和长期记忆(LSTM)结合在一起,以预测人心脏功能中异常。机器学习模型用于检测来自ECG和PCG信号的异常。这项研究中使用了两个突出的数据集,即Physionet 2016和Physionet 2017,用于培训和测试开发的机器学习模型。经验模式分解已用于预处理心脏声音信号和心电图信号。使用EMD可以将信号分解为其基本振荡组件,称为固有模式函数(IMF)。通过将信号与噪声比值与原始和过滤的PCG信号进行比较,可以评估该方法在降低噪声方面的有效性。特征提取是通过生成DeNO.信号的缩放图完成的。缩放图是通过连续小波变换(CWT)获得的。此后,一种称为CNN-LSTM的混合深度学习技术用于分类和训练模型。所提出的模型在分类和检测人心脏功能异常方面的精度为86%。