摘要:使用简单的化学浴沉积方法,将纳米结构的铁二硫化物(FES 2)均匀沉积在再生纤维素(RC)和氧化的碳纳米管(CNT)基于氧化的碳纳米管(CNT)的复合膜上,以形成RC/CNT/FES/FES 2复合膜。RC/CNT复合膜是FES 2微球的均匀沉积的理想底物,这是由于其独特的多孔结构,较大的特定表面积和高电导率。polypyrole(PPY),一种导电聚合物,以提高其电导率和循环稳定性。由于FES 2具有高氧化还原活性和具有高稳定性和电导率的PPY的协同作用,RC/CNT/FES 2/PPY复合电极表现出出色的电化性能。用Na 2测试的RC/CNT/0.3FES 2/PPY-60复合电极因此,在1 mA cm-2的电流密度下,水溶液可以实现6543.8 mf cm-2的优异面积电容。电极在10,000电荷/放电周期后保留了其原始电容的91.1%。扫描电子显微镜(SEM)图像显示,在10,000周期测试后,在RC/CNT/0.3FES 2/PPY-60膜中形成了孔径为5-30μm的离子转移通道。由两种相同的RC/CNT/0.3FES 2/PPY-60复合电极组成的对称超级电容器设备提供了1280 MF CM - 2的高度电容,最大能量密度为329μWHCM - 2,最大功率密度为24.9 mW cm-w cm-w cm-w cm-w cm-w cm-2%,且86-2%2%。在40 mA cm-2处的循环在1.4 V的宽电压窗口进行测试时。这些结果表明,RC/CNT/FES 2/PPY复合电极的最大潜力用于制造具有高工作电压的高性能对称超级电容器。
半导体 CNT 制成的场效应晶体管 (FET) 的特性。使用等离子体辐射故意向 CNT 中添加缺陷,并通过拉曼光谱确认缺陷(主要是空位)的存在。添加缺陷的 CNT-FET 对 NO 2 的化学电阻响应比具有基线缺陷水平的 CNT-FET 大得多,再次表明缺陷会改善化学电阻响应。大量 CNT 研究调查了晶格缺陷,这里指的是结构缺陷和与 sp 2 键合碳原子完美网络的取代偏差。在 CNT 生长过程中,当一个或多个碳原子被其他元素的原子取代时,可能会发生取代“掺杂”。氮 21,22 和硼 23,24 是最常研究的取代掺杂剂。由于掺杂这两种元素的CNT在电池中表现出良好的储能性能,因此已经开发出可控工艺来按需应用此类掺杂剂。掺杂元素会在CNT结构中产生局部变化25,从而增强纳米管26的表面反应性,因此也可能改善气体传感性能。在已发表的实验中,硼和氮掺杂的双壁和多壁CNT对NH 3 和NO 2 检测表现出了改进的化学电阻灵敏度。26–28结构晶格缺陷(例如空位、双空位和Stone-Wales缺陷)也可能出现在CNT生产过程中29–31,并且已知会改变纳米管的电子特性32,33它们对化学电阻气体传感的灵敏度和选择性影响已被研究19,34,并被发现可以提高CNT在NH 3 、NO 2 和H 2 检测中的性能。
使用NCA/A三元活性材料(NCM),在当前生产的高端LIB中,将LioAccum TM用作阴极导电剂。①下一代高端LIB:还为旨在实现高容量电池的硅阳极开发了CNT分散剂。客户评估正在进行中。②下一代中端LMFPS:一种CNT分散,可满足对中等容量和低成本LMFP市场产品的新需求。③超高端全稳态电池:我们正在与客户合作开发CB和CNT分散。
q CIS 4431 IT 自动化(先决条件:CGS4285) q CIS 4431 IT 自动化(先决条件:CGS4285) q CNT 4504 高级网络管理(先决条件:CNT4513) q CNT 4504 高级网络管理(先决条件:CNT4513) q CNT 4513 数据通信(先决条件:COP3804 和 CGS4285) q CNT 4513 数据通信(先决条件:COP3804 和 CGS4285) q CNT 4603 Windows 系统管理(先决条件:CGS3767) q CNT 4603 Windows 系统管理(先决条件:CGS3767) q COP 4005 Windows IT 编程(先决条件: COP3337/COP3804 和 CEN3721,要求:COP4703) q COP 4005 Windows IT 程序 (先决条件:COP3337/COP3804 和 CEN3721,要求:COP4703) q COP 4655 移动应用程序程序 (先决条件:COP4814 和 CEN3721) q COP 4655 移动应用程序程序 (先决条件:COP4814 和 CEN3721) q COP 4751 高级数据库管理 (先决条件:COP4703) q COP 4751 高级数据库管理 (先决条件:COP4703) q COP 4813 Web 应用程序程序 (先决条件:CGS4854) q COP 4813 Web 应用程序程序(先决条件:CGS4854) q COP 4814 基于组件的软件开发(先决条件:COP4703 和 CGS4854) q COP 4814 基于组件的软件开发(先决条件:COP4703 和 CGS4854)
图 1. 2 股 CNT 纱线表面和横截面:(a) 长度范围为 150-500 米、线密度为 7-10 tex 的 CNT 纱线卷;(b) 不规则纱线横截面;(c) 纵向
碳纳米管 (CNT) 具有独特的结构和电气性能,其特性非常值得研究。场效应晶体管技术中 CNT 的小结构可以生产出性能更佳的小型器件。这项工作采用了田口方法来优化碳纳米管场效应晶体管 (CNTFET)。使用 Minitab 19 软件进行田口方法分析。选择了三个尺寸的三个设计参数(CNT 的直径、间距和 CNT 的数量)来提高 CNTFET 的性能。使用 L27 正交阵列和信噪比 (SNR) 来收集和分析数据。使用方差分析验证了田口方法的结果。分析结果显示了三个设计参数的最佳组合,在高功率和低功率应用方面产生了最佳性能。影响 CNTFET 电流特性的最主要设计参数是 CNT 直径,其对导通电流 (Ion)、关断电流 (Ioff) 和电流比 (Ion/Ioff) 的影响分别为 59.93%、96.15% 和 99.14%。通过确定 CNTFET 中最主要的结构,可以进一步优化器件。最终,CNTFET 器件可以在高功率和低功率应用方面得到增强。
战略方向?从最近的评估和数据收集的初步综合来看,是否有某些战略问题浮出水面,CNT 想要在即将到来的规划工作中解决这些问题?是否有利益相关者希望看到 CNT 以任何特定方式增长/缩小/转型?CNT 目前没有战略计划或变革理论。CNT 通常专注于建筑环境中的系统变革工作,并致力于其使命。这项工作的一个特别重点是影响,并围绕预期影响以及我们如何实现该影响制定清晰、共同的语言。还有其他次要问题涉及计划和计划、财务可持续性和组织结构。构成组织评估的各个利益相关者的信息将在合同执行后共享。
随着设备加工精度的发展和半导体材料掺杂的均匀性,由于设备的生产过程,由铜所代表的金属互连设备的瓶颈变得越来越明显。金属的性能在微尺度上显着恶化,而碳纳米管组件结构在此规模上具有很大的优势。除了具有高于铜的高电导率外,CNT还具有出色的导热率,可以支持良好的热管理和热量耗散。CNT的另一个重要方面与其焊料的独特特征和高频工作能力有关。纳米焊接技术涉及局部加热CNT bers以产生交联的bers。1,2基于这项技术,可以通过CNTber构建各种结构,包括2D网络和3D笼子,并且可以生产可编程的电路。此外,CNT可以在40 GHz或更高频率的高频率下使用高性能,这代表了由于其性质而无法克服的金属的局限性。此外,散热已成为限制
虽然LWFA研究目前由精心量身定制的气态目标主导[3],但固态等离子体可能很快成为一种替代方案,因为它们的固有优势(例如较高的电子密度和更广泛的拓扑灵活性)。例如,有可能准备具有可控有效等离子体密度的空心靶标。碳纳米材料(例如石墨烯[4])和CNT是良好的候选者,因为其制造技术最近的进展。这项工作考虑了CNT的25 nm-厚的束(绳索)[5],而不是密集包装的CNT的大容量(森林)。考虑到CNT束可能包含数十个或数百个试管和固有的空隙,因此可以合理地假设原子的密度在10 22 cm 3--中。可以制造一个目标,在同心壳中分布CNT束,如图1所示,有效的等离子体密度为10 20 cm 3-。
