[5] Stenton,St.L.,O'Leary,M。C Singer-Berk,M.,Weisbur,B.,Wilson,M.,Austin-Tse,C.,Abdelhakim,M.,Althagaafi,A.,Babbi,G.,G.,F.,F.,F.,F.,F.,F.,F.,F.,F.,F.,F.,F.,F. M.,M.,M.,M.,R.,Jacobsen,J.O。B.,Joseph,T.,Kamandula,A.,P.,Kint,C.,Lichtarge,O.,Limongeli,I.,Lu,Y. Pham,Pham,T。H. C.,Podda,M。S .. W.,Tiwari,N.,Wang,Xang,Wang,Williams,A. Luria,A。 “对稀有项目很少令人讨厌的诊断优先级方法的批判性评估”。 in:基因组学人18.1(4月 2024)。B.,Joseph,T.,Kamandula,A.,P.,Kint,C.,Lichtarge,O.,Limongeli,I.,Lu,Y. Pham,Pham,T。H. C.,Podda,M。S .. W.,Tiwari,N.,Wang,Xang,Wang,Williams,A. Luria,A。“对稀有项目很少令人讨厌的诊断优先级方法的批判性评估”。in:基因组学人18.1(4月2024)。
姓名(名)姓名(姓)电台海报标题 Lauryn Adair 1 转运蛋白配体抑制斑马鱼 Dravet 综合征模型中的兴奋过度和代谢缺陷 Sarah Asby 2 癌症患者免疫检查点抑制剂介导的肾毒性新型检测方法的开发 Stephanie Bersie 3 吞噬细胞内坏死和凋亡颗粒细胞尸体的差异处理 Daniel Breiner 4 血红素改变铜绿假单胞菌烷基喹诺酮的产生 Robert Canfield 5 纳米颗粒递送核酸以诱导膀胱癌中的 1 型干扰素反应 Nai-Chia Chen 6 范围时间与 1 型糖尿病患者视网膜病变风险的关系 Sophia Clune 7 CHD1L 抑制剂 OTI-1100 的有效合成和衍生物作为新型癌症治疗药物 Bella Coenen 8 基于代谢组学鉴定以蓝莓为第一食物的婴儿血清和尿液中的蓝莓化合物 Mouna Dardouri 9 科罗拉多州在 2019 年至 2021 年 COVID-19 大流行期间处方药使用情况的变化:使用 ARIMA 模型进行中断时间序列分析 Baharak Davari 10 西罗莫司代谢物及其降解产物的免疫抑制活性 Anna Figueroa 11 神经元兴奋性过高的体外模型中的生物能量改变和氧化还原控制 Hanmant Gaikwad 12 用菁脂质对肿瘤进行体内涂抹:结构-活性关系 Paola Garcia Gonzalez 13 氧化应激导致 GFAP 和波形蛋白表达增加 Shilpa George 14 用于眼部药物的噬菌体样颗粒递送:等离子体波导共振光谱和使用体外和离体角膜模型的评估 Matthew Gibb 15 肺部炎症和病理在甲醛和氯化苦毒性模型中依赖于肥大细胞
丘脑下核(STN)深脑刺激(DBS)是一种已建立的晚期帕金森氏病(PD)的神经外科治疗,涉及植入导致精确地向大脑提供电刺激(Benabid等人。,1991; Limousin等。,1998; Coenen等。,2008年; Kalia等。,2013年)。最佳DBS设置的识别对于最大化治疗结果至关重要。 但是,即使在准确的铅定位时,此仍然耗时,并且高度依赖于程序员专业知识(Volkmann等人。 ,2002年; Picillo等。 ,2016年; Lange等。 ,2021)。 传统上,DBS设置是通过单极审查评估选择的,其中通过系统地评估每个触点刺激时引起的临床响应来识别最佳DBS触觉。 随着新技术的出现,例如定向线索和多个独立的电流控制(MICC)刺激器,编程参数空间已成倍扩展。 该技术允许提高刺激精度,从而优化了DBS治疗,但以大大增加编程的复杂性和时间为代价(Wagle Shukla等人。 ,2017年; Santaniello等。 ,2018年; Koeglsperger等。 ,2019年)。 最后,并非所有症状都会立即对DBS做出反应,这意味着临床医生可能无法在一次临床访问期间确定最佳环境(Wagle Shukla等人。 ,2017年)。 因此,并非所有DBS患者都接受最佳治疗。 ,2015年; Lange等。最佳DBS设置的识别对于最大化治疗结果至关重要。但是,即使在准确的铅定位时,此仍然耗时,并且高度依赖于程序员专业知识(Volkmann等人。,2002年; Picillo等。,2016年; Lange等。,2021)。传统上,DBS设置是通过单极审查评估选择的,其中通过系统地评估每个触点刺激时引起的临床响应来识别最佳DBS触觉。随着新技术的出现,例如定向线索和多个独立的电流控制(MICC)刺激器,编程参数空间已成倍扩展。该技术允许提高刺激精度,从而优化了DBS治疗,但以大大增加编程的复杂性和时间为代价(Wagle Shukla等人。,2017年; Santaniello等。,2018年; Koeglsperger等。,2019年)。最后,并非所有症状都会立即对DBS做出反应,这意味着临床医生可能无法在一次临床访问期间确定最佳环境(Wagle Shukla等人。,2017年)。因此,并非所有DBS患者都接受最佳治疗。,2015年; Lange等。成像为指导编程的潜在解决方案。这种方法涉及与相关核有关的铅和不同接触的可视化。研究表明,与传统编程相比,2021; Malekmohammadi等。,2022)。最近,图像引导的方法还可以看到DBS诱导的电刺激传播,从而使程序员更清楚地表明刺激区域的理论指示,例如
高级项目学生 2020-21 年期间,生物系的 11 名教员将为高级项目学生提供指导。他们是:Casey Bradshaw-Wilson 博士、Lauren French 博士、Brad Hersh 博士、Tricia Humphreys 博士、Mahita Kadmiel 博士、Ron Mumme 博士、Margaret Nelson 博士、Lauren Rudolph 博士、Yee Mon Thu 博士、Matthew Venesky 博士和 Lisa Whitenack 博士。他们实验室提供的研究机会以及他们的高级项目学生通常从事的研究活动类型如下。(Catharina Coenen 博士和 Becky Dawson 博士将不会在 2020-21 年期间为高级研究生提供指导。) ___________________________________________________________________________________________ CASEY BRADSHAW-WILSON 我的研究兴趣主要在淡水生态学和爬虫学,但我也与学生一起合作过更一般的生态学项目(水生生物之外)。 我还对研究栖息地丧失、破碎化和改变对蝾螈运动模式和数量的影响感兴趣。我个人的研究是调查入侵鱼类物种(圆虾虎鱼)对当地动物群(水生大型无脊椎动物、鱼类、两栖动物和贻贝)的影响。综合项目通常包括秋季的实地研究和冬季的后续实验室实验和数据分析。鉴于我在野生动物和渔业方面的背景,综合学生可以在生态研究领域有广泛的主题。 ___________________________________________________________________________________________ 劳伦·弗伦奇 我的研究兴趣属于细胞和分子神经科学的总标题。我感兴趣的是探索是什么让单个神经元彼此独特,它们如何“交谈”以在神经系统中传递信息,以及药物和毒素如何影响它们的功能。我实验室的项目涉及神经生理学和分子生物学技术。药理学对神经系统的研究至关重要;了解离子通道等蛋白质如何促进正常功能,并发现病理状况背后的机制。其中一个项目涉及一种狩猎蜗牛,其毒液非常复杂且有效,仅作用于猎物的神经系统。许多蜗牛毒液化合物既可用于医学,也可用于基础研究。我的目标是找到针对某些特定钙和钾离子通道的药剂,以进一步了解这些蛋白质在神经系统中的作用。另一个项目涉及一种称为 BK 通道的离子通道及其在阿尔茨海默病病理学中的可能作用。研究表明,这种通道的活动受到一种称为淀粉样蛋白β的蛋白质的抑制。我感兴趣的是描述这种相互作用并发现肽如何影响通道行为。另一项研究涉及将小龙虾作为研究成年神经发生的模型生物。我们过去认为神经系统只能在发育过程中产生新的神经细胞,但现在我们知道神经发生在动物的一生中都在大脑的某些区域进行。我对研究这一过程背后的机制以及如何促进或抑制这一过程很感兴趣。 ___________________________________________________________________________________________
当 Ashley 继续与 Vincent Aleven 一起开发 CATO 系统(Aleven and Ashley 1994 )时,Rissland 与 David Skalak 一起开发了 CABARET。CABARET 的一个关键特征是它是一个混合系统,其中案例推理是在规则框架内展开的。法律案例推理在整个十年中一直被追求,也是 Hage 等人的研究主题。(1993),由 Bart Verheij 和 Prakken and Sartor(1998)评论,由 Trevor Bench-Capon 评论。Hage 等人对导致法律案件困难的原因进行了描述,这是 Gardner(1987)引入的一个概念。Prakken 和 Sartor 提供了一种将先例案例表示为规则集的方法,为随后大量利用先例进行推理的研究奠定了基础 1 。对道义概念进行建模是 Jones 和 Sergot ( 1992 ) 的研究主题,Guido Governatori 对此进行了评论。特别是,他们确定了道义建模的必要性,即需要考虑和推理违反的可能性。Sartor ( 1992 ) 也分析了道义概念,Guido Governatori 也对此进行了评论,重点是规范冲突。该期刊第一期讨论的第三个主题是法律知识的表示(Bench-Capon 和 Coenen 1992),Michał Arasz- kiewicz 和 Enrico Francesconi 对此进行了评论。本文特别关注的是必须维护此类知识以应对立法变化,并认为可以通过维护来源和所表示知识之间的对应关系来实现这一点。随着人们对本体论 2 的兴趣的增长,法律知识表示在第二个十年变得更加突出。在第一个十年中另一个重要的主题是使用对话来模拟法律程序和法律论证。Gordon(1993),由 Guido Governatori 评论,在推广对话在人工智能和法律中的使用方面发挥了重要作用,他使用该技术来模拟特定的法律程序。对话也是 Hage 等人(1993 年)和 Prakken 和 Sartor(1998 年)的核心。对话通常是出于对论证建模的需求。论证在 Skalak 和 Rissland(1992 年)中占有重要地位,也是 Loui 和 Norman(1995 年)的主题,Bart Verheij 对此进行了讨论,展示了如何通过扩展论证来揭示隐藏的步骤。在整个十年中,人们也对亚符号技术产生了兴趣,尤其是神经网络。(1999 年)。在第二个十年,建模论证逐渐被论证方案 3 的使用所主导,而对话的明确表示的重要性则下降了。Stranieri 等人代表了这种兴趣。Matthias Grabmair 评论道。本文代表了一项持续进行的机构或工作的顶峰,并且因其认识到需要解释建议以及使用论证来做到这一点而引人注目。正如 Villata 等人所讨论的(2022),在本期的其他地方,亚符号技术现在已在人工智能和法律领域广泛使用,对解释的需求仍然是一个紧迫的问题。
O. Grulke 1,25,,∗,C.Albert 2,J.A。K. Aleynikova 1 , AL Alonnikova 3 , G. Anda 4 , T. Andreeva 1 , M. Arvanitou 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 0 1 1 0 1 1,E。Ascasibar3 3 5 5,48 4,J.-P。是Bähner6,S.-G。 Baek 6,M。Balden7,JBosch 1,10,H。Bouvain 1,St. Bride 1,T。错误1,H。Braune 1,C。 Büschel1,R。Bussiahn1,A。Bus4,B。12,D。Casta Coenen 11,G。Conway7,M。Cornelissen1,27,Y。Corre14,P。 这座城堡7,G。Csymic11,H。Grandfather1,R.J。 Davies 1,C。第16天,S。Discover 1,R。of Wolf 17,W。Decker 17,A。Despontin 9,P。Despontin 15,C.P。 Dhard 1,A。Dinkle 1,18,F.A。 ISA 19,T。 首先22,F.J。Escot 3,M.S。 特殊1,10,T。Strawberry 3,D。Fehling 8,L。Feuerstein 16,J。Fellinger 1,Y。Felg 1,D.L.C。 Fernand 7,St.Fisher 1,E.R。 O. Kazakov 15,N。Essice 28,W。Kernbichler 2,A.K。Bosch 1,10,H。Bouvain 1,St. Bride 1,T。错误1,H。Braune 1,C。Büschel1,R。Bussiahn1,A。Bus4,B。12,D。CastaCoenen 11,G。Conway7,M。Cornelissen1,27,Y。Corre14,P。 这座城堡7,G。Csymic11,H。Grandfather1,R.J。 Davies 1,C。第16天,S。Discover 1,R。of Wolf 17,W。Decker 17,A。Despontin 9,P。Despontin 15,C.P。 Dhard 1,A。Dinkle 1,18,F.A。 ISA 19,T。 首先22,F.J。Escot 3,M.S。 特殊1,10,T。Strawberry 3,D。Fehling 8,L。Feuerstein 16,J。Fellinger 1,Y。Felg 1,D.L.C。 Fernand 7,St.Fisher 1,E.R。 O. Kazakov 15,N。Essice 28,W。Kernbichler 2,A.K。Coenen 11,G。Conway7,M。Cornelissen1,27,Y。Corre14,P。这座城堡7,G。Csymic11,H。Grandfather1,R.J。 Davies 1,C。第16天,S。Discover 1,R。of Wolf 17,W。Decker 17,A。Despontin 9,P。Despontin 15,C.P。Dhard 1,A。Dinkle 1,18,F.A。ISA 19,T。首先22,F.J。Escot 3,M.S。 特殊1,10,T。Strawberry 3,D。Fehling 8,L。Feuerstein 16,J。Fellinger 1,Y。Felg 1,D.L.C。 Fernand 7,St.Fisher 1,E.R。 O. Kazakov 15,N。Essice 28,W。Kernbichler 2,A.K。首先22,F.J。Escot 3,M.S。特殊1,10,T。Strawberry 3,D。Fehling 8,L。Feuerstein 16,J。Fellinger 1,Y。Felg 1,D.L.C。Fernand 7,St.Fisher 1,E.R。 O. Kazakov 15,N。Essice 28,W。Kernbichler 2,A.K。Fernand 7,St.Fisher 1,E.R。O. Kazakov 15,N。Essice 28,W。Kernbichler 2,A.K。O. Kazakov 15,N。Essice 28,W。Kernbichler 2,A.K。Flom 9,O。Ford1,T。Fornal 23,J。Frank 1,10,9,G。García-Rega Grahl 1,H。Green 7,E。Grigore 50,M。Cruise 23,J.F。García-Rega Grahl 1,H。Green 7,E。Grigore 50,M。Cruise 23,J.F。战争Arnaiz 1,V。Haak1,L。VanHam 1,K。Hammond26,B。Momstra27,X。Han 9,S.K。 Hansen 6,Harris 8,D。Hartmann 1,D,K。Hophler 7,St.Hoermann 7,42,K.-P。所有第51,A。Holtz 1,D。应该11,M。Houry 14,J。Huang 11,M。Hubeny 11,K。Hunger 7,D。Hwangbo 45 45 45 45 45 45 45 45 45 45 45,K。Ida,Z Jouna,Z Jouna 15,St.-Stair 30,J.-P。 Kamionka 1,W。Caspare49,C。Cawan11,Ye。 Kharwandikar 1,M。Khokhlov1,C Klepper 8,T。Klinger1,18,J.Knauer 1,A。Knieps 11,M Cortual 27,J。Koschinsky 1,J CRUTD 22,M。Krychowiak1,I。Kubkowska23,M.D。 Laqua 1,18,M.R。 Larsen 25,战争Arnaiz 1,V。Haak1,L。VanHam 1,K。Hammond26,B。Momstra27,X。Han 9,S.K。Hansen 6,Harris 8,D。Hartmann 1,D,K。Hophler 7,St.Hoermann 7,42,K.-P。所有第51,A。Holtz 1,D。应该11,M。Houry 14,J。Huang 11,M。Hubeny 11,K。Hunger 7,D。Hwangbo 45 45 45 45 45 45 45 45 45 45 45,K。Ida,Z Jouna,Z Jouna 15,St.-Stair 30,J.-P。 Kamionka 1,W。Caspare49,C。Cawan11,Ye。 Kharwandikar 1,M。Khokhlov1,C Klepper 8,T。Klinger1,18,J.Knauer 1,A。Knieps 11,M Cortual 27,J。Koschinsky 1,J CRUTD 22,M。Krychowiak1,I。Kubkowska23,M.D。 Laqua 1,18,M.R。 Larsen 25,Hansen 6,Harris 8,D。Hartmann 1,D,K。Hophler 7,St.Hoermann 7,42,K.-P。所有第51,A。Holtz 1,D。应该11,M。Houry 14,J。Huang 11,M。Hubeny 11,K。Hunger 7,D。Hwangbo 45 45 45 45 45 45 45 45 45 45 45,K。Ida,Z Jouna,Z Jouna 15,St.-Stair 30,J.-P。 Kamionka 1,W。Caspare49,C。Cawan11,Ye。Kharwandikar 1,M。Khokhlov1,C Klepper 8,T。Klinger1,18,J.Knauer 1,A。Knieps 11,M Cortual 27,J。Koschinsky 1,J CRUTD 22,M。Krychowiak1,I。Kubkowska23,M.D。 Laqua 1,18,M.R。 Larsen 25,Kharwandikar 1,M。Khokhlov1,CKlepper 8,T。Klinger1,18,J.Knauer 1,A。Knieps 11,M Cortual 27,J。Koschinsky 1,J CRUTD 22,M。Krychowiak1,I。Kubkowska23,M.D。 Laqua 1,18,M.R。 Larsen 25,Klepper 8,T。Klinger1,18,J.Knauer 1,A。Knieps 11,M Cortual 27,J。Koschinsky 1,JCRUTD 22,M。Krychowiak1,I。Kubkowska23,M.D。 Laqua 1,18,M.R。 Larsen 25,CRUTD 22,M。Krychowiak1,I。Kubkowska23,M.D。Laqua 1,18,M.R。 Larsen 25,Laqua 1,18,M.R。Larsen 25,Larsen 25,Cuczy 1,D。Klalla1,A。Kumar34,T。Kurki-Suonio 32,I。Kawk35,S。Kwak1,V。Lancetti15,A。Langenberg1,H。Laqua1,H.P。
1. John APP、Udupa K、Avangapur S 等人。2 型糖尿病患者的心脏自主神经功能障碍:一项针对心率变异性测量的调查性研究。Am J Cardiovasc Dis。2022;12(4):224-232。2. Pop-Busui R、Low PA、Waberski BH 等人。先前强化胰岛素治疗对 1 型糖尿病患者心脏自主神经系统功能的影响:糖尿病控制和并发症试验/糖尿病干预和并发症流行病学研究 (DCCT/EDIC)。循环。2009;119(22):2886-2893。doi:10.1161/CIRCULATIONAHA。108.837369 3. Zoppini G、Cacciatori V、Raimondo D 等人。新诊断 2 型糖尿病患者队列中心血管自主神经病变的患病率:维罗纳新诊断 2 型糖尿病研究(VNDS)。糖尿病护理。2015;38(8):1487-1493。doi: 10.2337/ dc15-0081 4. Low PA、Benrud-Larson LM、Sletten DM 等人。自主神经症状和糖尿病神经病变:一项基于人群的研究。糖尿病护理。2004;27(12):2942-2947。doi: 10.2337/diacare.27.12.2942 5. Chowdhury M、Nevitt S、Eleftheriadou A 等人。 1 型和 2 型糖尿病患者的心脏自主神经病变与心血管疾病及死亡风险:一项荟萃分析。BMJ Open Diabetes Research and Care。2021;9(2):e002480。doi: 10.1136/bmjdrc-2021-002480 6. Pop-Busui R、Evans GW、Gerstein HC 等人。心脏自主神经功能障碍对糖尿病心血管风险控制行动 (ACCORD) 试验中死亡风险的影响。糖尿病护理。2010;33(7):1578-1584。doi: 10.2337/dc10-0125 7. Soedamah-Muthu SS、Chaturvedi N、Witte DR 等人。欧洲1型糖尿病患者危险因素与死亡率的关系:EURODIAB前瞻性并发症研究(PCS)。糖尿病护理。2008;31(7):1360-1366。doi:10.2337/dc08-0107 8. Cox AJ、Azeem A、Yeboah J 等人。心率校正 QT 间期是2型糖尿病患者全因死亡和心血管死亡的独立预测指标:糖尿病心脏研究。糖尿病护理。2014;37(5):1454-1461。doi:10.2337/dc13-1257 9. Rossing P、Breum L、Major-Pedersen A 等人。QTc 间期延长可预测1型糖尿病患者的死亡率。糖尿病医学。 2001;18(3):199-205。doi:10.1046/j.1464-5491.2001.00446.x 10. Wehler D、Jelinek HF、Gronau A 等人。超短心电图记录得出的心率变异性特征的可靠性及其在评估心脏自主神经病变中的有效性。生物医学信号过程控制。2021;68:102651。doi:10.1016/j.bspc。2021.102651 11. Kulkarni AR、Patel AA、Pipal KV 等人。机器学习算法通过心电图无创检测糖尿病和糖尿病前期。BMJ Innov。2023;9(1):32-42。 doi: 10.1136/bmjinnov-2021-000759 12. Ribeiro Pinto J、Cardoso JS、Lourenço A。心电图生物识别技术的演变、当前挑战和未来可能性。IEEE Access。2018;6:34746-34776。doi:10.1109/ACCESS.2018.2849870 13. Aldosari H、Coenen F、Lip GYH、Zheng Y。基于基序的特征向量:面向心血管疾病分类的同质数据表示。在:Golfarelli M、Wrembel R、Kotsis G、Tjoa AM、Khalil I 编辑。大数据分析和知识发现。计算机科学讲义。施普林格国际出版公司;2021 年:235-241。doi:10.1007/978-3-030-86534-4_22 14. Abdel-Jaber H、Devassy D、Al Salam A、Hidaytallah L、EL-Amir M。深度学习算法及其在医疗保健中的应用综述。算法。2022;15(2):71。doi:10.3390/a15020071
Thomas Sun Federsen 1,2,∗,I。Abramovic3,1,A。A。Force 1,N。Allen 5,A。A. Alonso 6,G。Anda 7,T。Andreeva 1,C Furnace 9,K。Avradies 10,E。Aymerich 11,S.-G.。 Baek 3 , J. Balden 12 , M. Balden 1 , M. Balden 8 , J C. Beadler 1 , C Border 1 , D. Borodin 17 , J. Boscary 8 , H. Bosch 1 , 18 , T. Bosmann 1 Brunner 1 , St. Busers 1 , R. Bussiahn 1 , B. Butttenschön 1 , A. K. Camacho Mata 1 , I. Campaign 20 , B. Cannas 11 , A. Cappa 6 , A. Cars 1 , F. Carovani Castle 6,N。Chadge1,I。Celes23,A。保持24,J.W。K. Clore 26,G。Ceh 7,B.,A。Destay 13,St.Denk 3,C。Dhard 1,A。Dinkleg 12,T。Dittmar17,M。Dreval14,M。Dravlak1,P。Drews17,D。Dunai7,Edlund 3,F。Endler1,D.A。首字母5,F.J。Escoto 6,T。Strawberry 6,E。13,St.Freunt 1,G。他妈的1,M。Fukuyama 30,Garden Regain 6,I。Garci-Cort是6,J。Gaspar31,D.A。盖茨29,J。Geiger1,B。Geiger13,L Graves 12,J.绿色13,E。Grelier9,H。Greener8 8,St。Grote1,M。Groth34,M.Günter8,V。Haak1,M。M.有1,P。Han 3,J.H。 Harris 38,H。Hartman 1,D。Hartmann 1,D。Hathiramani 1,R。Hatzky 8,8,40,C 全部17,A。Holtz 1,D。Hopf 8,D。Höschen17,M。Houry 9,J。Howard 19,Han 3,J.H。Harris 38,H。Hartman 1,D。Hartmann 1,D。Hathiramani 1,R。Hatzky 8,8,40,C 全部17,A。Holtz 1,D。Hopf 8,D。Höschen17,M。Houry 9,J。Howard 19,Harris 38,H。Hartman 1,D。Hartmann 1,D。Hathiramani 1,R。Hatzky 8,8,40,C全部17,A。Holtz 1,D。Hopf 8,D。Höschen17,M。Houry 9,J。Howard 19,
E. Joffrin 1,∗,M。Wischmeier2,M。Barruzz3,A。大约4,A。第2章,D。Keeling 5,B。Labit 6,E Abbot 7,M。Agoniti 7,F.C.P.Albert Devasagayam 11,St. Alexander 5,E L. Applice 5,G.M。 方法3,M。Ariola17,C。Arnas18,J.F。 Artaud 1,W。Arter 5,O。Associations 19,L。Auce 20,M.H。 Aumunier 1,F。Ayllon41,E M. Balden 2,A。Balestrius6,M。BaqueroRuiz 6,T。Barberis24,C。R。Morals 5,J 2,K。Bogar 9,T.O.S.J。 Carvalo 5,36,I。Cassiaghi 12,A。Casol 9,F.J。Casson 5,C 名人28,I.H。 Grazia 17,A。Albert Devasagayam 11,St. Alexander 5,E L. Applice 5,G.M。方法3,M。Ariola17,C。Arnas18,J.F。Artaud 1,W。Arter 5,O。Associations 19,L。Auce 20,M.H。Aumunier 1,F。Ayllon41,E M. Balden 2,A。Balestrius6,M。BaqueroRuiz 6,T。Barberis24,C。R。Morals 5,J 2,K。Bogar 9,T.O.S.J。Carvalo 5,36,I。Cassiaghi 12,A。Casol 9,F.J。Casson 5,C名人28,I.H。Grazia 17,A。Bosman 29, C. Bourdelle 1, C. Bowman 5, S. Brezinsek 28, 76, D. Brida 2, F. Brochard 30, R. Brunet 1, D. Brunetti 5, V. Bruno 1, R. Buchholz 10, J. Buermans 31, H. Bufferand 1, P. Buratti 3, A. Burckhart 2, J. Cai 28, R. Calado 32, J. Caloud 9, S. Cancelli 20,F。Dog 33,B。Cannas 21,M。Cappelli 3,S。Carcangiu 21,A。Cardinal 3,S。Carli 34,D。Carnival 35,M。Carole 16,M。Carpita 6,D。Carralero 22,F。Caruggi,I.S。 Challis 5, R. Chandra 11, A. Chankin 2, B. Chapman 5, H. Chen 41, M. Chernyshova 37, A.G. Chiariello 17, P. Chmielewski 37, A. Chomiczewska 37, C. Cianfarani 3, G. Ciraolo 1, J. Citrin 29, F. Clairet 1, S. Coda 6, R. Coelho 32,J.W。 咖啡38,C。Colandrea 6,L。Colas 1,S。Conroy 15,C。Conte 6,N.J。Conway 5,L。Cordaro 7,Y。Corre1,D.Costa 32,S。Costea 39,D。Coster 39,D。Coster 2,X。Courtois 2,Coverleis 1,C。Cowley 40,T。Craciunescu 42,Croci 20,G.Croci 20,A.M。 Croitou 42,K。Crumpets 31,D.J。 Cruz Zabala 41,G。Cseh 19,T。Czarski 37,A。Da Ros 1,A。Dal Molin 20,M。Dalla Rosa 20,Y。Damizia5,O。 d'Arcangelo 3,P。David2,M。DeAngeli 12,E。DeLa Cal 22,E。Dela Luna 22,G。DeTommasi 17,J。Decker6,R。Dejarnac9,D.Del Sarto 26,G.Derks 29,G.Derks 29,C。Desgranges 1,C。Desgranges 1,P。Devynck 1,P。Devynck 1,S. of Genoa 43,L.Ee。 siena 2,M。Dicorato16,M。Diez1,M。Dimitrova9,T。Dittmar28,L。Dentrich23,J.J。 DomínguezPalaciosDurán41,P。Donnel1,D。Douai1,S。Dowson5,S。Doyle41,M。Dreval44,P。Drews28,L。Dubus1,R。Dumont1,R。Dumont1,Bosman 29, C. Bourdelle 1, C. Bowman 5, S. Brezinsek 28, 76, D. Brida 2, F. Brochard 30, R. Brunet 1, D. Brunetti 5, V. Bruno 1, R. Buchholz 10, J. Buermans 31, H. Bufferand 1, P. Buratti 3, A. Burckhart 2, J. Cai 28, R. Calado 32, J. Caloud 9, S. Cancelli 20,F。Dog 33,B。Cannas 21,M。Cappelli 3,S。Carcangiu 21,A。Cardinal 3,S。Carli 34,D。Carnival 35,M。Carole 16,M。Carpita 6,D。Carralero 22,F。Caruggi,I.S。Challis 5, R. Chandra 11, A. Chankin 2, B. Chapman 5, H. Chen 41, M. Chernyshova 37, A.G. Chiariello 17, P. Chmielewski 37, A. Chomiczewska 37, C. Cianfarani 3, G. Ciraolo 1, J. Citrin 29, F. Clairet 1, S. Coda 6, R. Coelho 32,J.W。咖啡38,C。Colandrea 6,L。Colas 1,S。Conroy 15,C。Conte 6,N.J。Conway 5,L。Cordaro 7,Y。Corre1,D.Costa 32,S。Costea 39,D。Coster 39,D。Coster 2,X。Courtois 2,Coverleis 1,C。Cowley 40,T。Craciunescu 42,Croci 20,G.Croci 20,A.M。 Croitou 42,K。Crumpets 31,D.J。Cruz Zabala 41,G。Cseh 19,T。Czarski 37,A。Da Ros 1,A。Dal Molin 20,M。Dalla Rosa 20,Y。Damizia5,O。d'Arcangelo 3,P。David2,M。DeAngeli 12,E。DeLa Cal 22,E。Dela Luna 22,G。DeTommasi 17,J。Decker6,R。Dejarnac9,D.Del Sarto 26,G.Derks 29,G.Derks 29,C。Desgranges 1,C。Desgranges 1,P。Devynck 1,P。Devynck 1,S. of Genoa 43,L.Ee。siena 2,M。Dicorato16,M。Diez1,M。Dimitrova9,T。Dittmar28,L。Dentrich23,J.J。 DomínguezPalaciosDurán41,P。Donnel1,D。Douai1,S。Dowson5,S。Doyle41,M。Dreval44,P。Drews28,L。Dubus1,R。Dumont1,R。Dumont1,siena 2,M。Dicorato16,M。Diez1,M。Dimitrova9,T。Dittmar28,L。Dentrich23,J.J。 DomínguezPalaciosDurán41,P。Donnel1,D。Douai1,S。Dowson5,S。Doyle41,M。Dreval44,P。Drews28,L。Dubus1,R。Dumont1,R。Dumont1,
等,2020;Williams 等,2021)。脱碳需要大规模快速而显著的供给侧工业转型,既要建立新的系统,也要淘汰现有的系统(Geels 等,2017;Grubert,2020b;McGlade 等,2018;Rissman 等,2020;Williams 等,2021;Zhao & Alexandroff,2019)。然而,脱碳能源系统所需的这种工业化的潜在规模在很大程度上取决于需求侧选择的行使程度(Pye 等,2021)。尽管对创建和部署新工业设施的过程进行了广泛的研究和审查,但明确关注逐步淘汰现有碳排放基础设施及其影响的研究却很少见(Rosenbloom & Rinscheid,2020)。此类研究主要侧重于限制未来化石燃料的开采和使用(Buck,2021;Muttitt & Kartha,2020;Piggot 等,2018;Piggot 等,2020;Zhao & Alexandroff,2019)或从先前行业解构中吸取的教训和框架(Normann,2019;Turnheim & Geels,2013)。详细的研究和建模侧重于预期的未来能源价格(以及潜在的价格冲击)等问题;资本投资轨迹;补救和回收的触发因素和实施;劳动力和培训要求;以及传统能源系统的最小可行规模——如果我们假设我们将成功脱碳,那么这些问题是必须研究的——但在文献中却明显缺失。缺乏对联合实施零碳排放和逐步淘汰化石燃料系统以及相关排放基础设施的协调规划的关注,对在实现美国国内目标(白宫,2021b)和国际气候目标(政府间气候变化专门委员会,2021)所需的快速时间内成功、公正的能源转型(Wang & Lo,2021)构成重大风险。这种风险主要是由于现有的排放化石燃料系统的社会嵌入性以及物质和政治主导地位造成了碳锁定(Unruh,2000;Wang & Lo,2021)。如果没有明确的规划,转型可能会面临重大挑战,例如当地经济衰退、获得高质量能源和基础设施系统的机会高度不平等,以及系统级特征(如可靠性、可访问性和可负担性)协调不力。已有证据表明,美国不协调的煤炭转型增加了出现负面结果的可能性,如经济困难(例如税收和工作损失)、无资金支持的义务(例如养老金、补救承诺、维护和监控)、身份和治理中断以及丧失复原力(Haggerty 等人,2018 年;Macey 和 Salovaara,2019 年;Roemer 和 Haggerty,2021 年)。在零碳和排放化石燃料系统共存的过渡时期,双方在运营上相互制约,我们在本评论中称之为过渡中期,要取得成功和公平,就需要有明确的规划,并以专门的指标为基础,协调零碳基础设施的建设和排放促进型化石燃料基础设施的淘汰。在过渡中期,零碳和碳排放基础设施都无法独自完全支持所有能源服务,而且整个系统并未针对这两种基础设施的社会技术特性进行优化。在过渡中期,适应不良、忽视协同机会和决策不协调的风险很高,尤其是当基础设施同时遇到过去经验中未充分描述的气候、技术和社会动态时。例如,可再生电力系统的发展可能会假设天然气备用发电机将始终可用,以提供低成本的电网支持服务(Phadke 等人,2020 年;Williams 等人,2021 年),或者特定地区的加油站在电动汽车普及率达到一定水平后可能同时面临盈利能力下降。需要专门为过渡动态设计的系统性能指标和其他评估工具,以衡量进展并及时发现新出现的挑战以应对这些挑战,特别是因为有些限制可以更容易地暂时放松以追求长期利益(例如,短期成本增加由长期成本节约和关注对能源负担影响的市场结构抵消),而其他限制则不然(例如,安全性和可靠性)。即使脱碳速度快到足以对负责任的加速构成挑战 (Skjølsvold & Coenen, 2021),也可能需要几十年的时间 (Williams et al., 2021),这将造成一段相当长的时间,在此期间,协调失败可能会加剧现有的结构性挑战 (Wang & Lo, 2021) 并产生新的挑战。能源转型,包括目前的脱碳转型,历来进展缓慢 (Fouquet, 2016)。几十年来,全球能源碳强度一直持平,化石燃料仍供应约 80% 的市场能源 (Hanna & Victor, 2021)。美国和其他地方可再生资源贡献的大幅增加,主要是对持续使用未减排的化石燃料的补充,而不是替代,尤其是在需求增长的情况下。尽管政策倾向于将转型视为“附加问题”(Aronoff 等人,2020 年),但在实践中,没有脱碳就无法完成脱碳转型,这意味着与排放相关的化石燃料基础设施和系统相关的企业、生计和生活方式将消失。除了就业和收入损失等明显挑战外,这种消失(以及对消失的预期)可能会给那些从事依赖化石能源活动的人带来非常具体、可能令人痛苦的社会技术想象和身份威胁(Grubert & Skinner,2017;Jasanoff & Kim,2009;Smith,2019),同时为现任政权行为者抵制转型创造了条件(Geels,2014),并最终减缓转型。实现公正转型的努力