b'abstract:与乙烯基连接的二维聚合物(V-2DPS)及其层堆叠的共价有机框架(V-2D COF)具有高平面内\ XCF \ XCF \ x80-Conjugation和Robobs框架的能量候选候选者。但是,当前的合成方法仅限于产生缺乏加工性的V-2D COF粉末,阻碍了它们进入设备,尤其是在依赖薄膜的膜技术中。在此,我们报告了通过knoevenagel多凝结的乙烯基链接阳离子2DPS膜(V-C2DP-1和V-C2DP-2)的新型水上表面合成,可作为高度可逆且基于耐用锌的Dual-iro-ion patchies(Zdibs)的阴离子选择性电极(作为阴离子)。模型反应和理论建模揭示了水面上knoevenagel反应的反应性和可逆性的增强。在此基础上,我们证明了对V-C2DPS膜的水表面2D多浓度,该膜显示出较大的侧向尺寸,可调厚度和高化学稳定性。代表性地,V-C2DP-1作为完全结晶和面向面的膜,具有A = B 43.3 \ XC3 \ X85的平面晶格参数。从定义明确的阳离子位点,定向的1D通道和稳定的框架中获利,V-C2DP-1膜具有优质的Bis(Trifluoromethanesulfonyl)Imide阴离子(TFSI)inImide(TFSI) - 转移率(T_ = 0.85),用于高空ZDIBS,从而在高空zdibs中进行transpertion andercation transportive and-Interc Zdib and Fratsion trande trander-dranscation-intrance zdib and。促进其特定能力(从〜83到124 mahg 1)和骑自行车寿命(> 1000个循环,能力保留95%)。
共价有机框架(COF)和金属有机框架(MOFS)是两种新兴的延长多孔结构,试图开发分子以外的网状化学,并为组成,结构,结构,性能和应用开放新的视野(Yaghi,2019; Yaghi,2019; Lyu et et lyu等。像将无机金属复合物扩展到2D和3D框架的MOF一样,COF将有机化学从分子和聚合物扩展到2D和3D有机结构(Diercks和Yaghi,2017)。MOF/COF的建造旨在通过拓扑指南(基于含金属的单位有机连接器/有机有机有机单体)之间通过牢固的键(坐标/共价相互作用)扩展多孔框架(坐标/共价相互作用)。这些方法的优点包括可控的合成,可设计的结构和可管理的功能(Geng等,2020)。除了具有高表面积和可调孔外,MOF和COF还显示出许多有趣的特性,包括通过π -π堆积和高稳定性的分层晶体结构和高稳定性,这仅在Graphene(Fritz and Coskun,2020年)中显示出由于存在强大的共振键。然而,无金属的COF远非满足众多领域的不断增长的需求,在这种情况下,金属在框架结构中的作用被强调。这包括诸如气体吸附和分离,异质催化,电子,电催化和电化学能量存储等应用。应对这些挑战的有效方法是将靶向金属离子引入COFS框架中以形成金属共价有机框架(MCOFS)(Dong等,2020)。与无金属COF相比,MCOF不仅具有上电催化活性,而且由于金属成分的参与而显示出更高的内在传导。开发独特的综合方法/策略来实现新颖的MOF,而COFS在促进其应用方面具有很大的希望。例如,通过液体液体界面聚合在室温和大气压下通过液体界面聚合制备灵活和独立的纯COF膜,这解决了一个主要问题,因为COF通常是无法解决的且无法实现的粉末(Liu等,2020)。已经有大量有机单体在其产生的结构中有效的功能化可能性。这导致基于实验室机器人和人工智能(AI)(AI)的“数字网状化学”,可以实现涉及合成和表征的高吞吐量实验。这种方法有望使MOF和COF中的发现更加重要,更容易实现(Lyu等,2020)。自1962年第一份报告使用葡萄糖氧化酶检测葡萄糖以来,电化学传感已被很好地接受为一种强大的工具,在各种领域中,需要高灵敏度,简单的操作,快速反应和低成本。电化学传感特别适合小型化,因此为制造灵活,一次性和廉价设备提供了多种施工优点(Amiri等,2018)。将新型元素引入MOF和COF为电化学传感带来了增强的范围,这有望促进其合成。
随着锂离子电池 (LIB) 在各种应用中的消耗量不断增加,开发锂离子电池的需求也日益增长。在这方面,关注具有适合 LIB 性能的材料非常重要。使用这些材料,电池的储能容量、循环寿命、重量和老化电池的回收利用有望得到改善。最近,共价有机骨架 (COF) 因其多孔性和优异的物理和化学稳定性等众多特性,在 LIB 的正极、负极、电解质和隔膜中显示出巨大的应用前景。本综述讨论了 COF 在下一代 LIB 中的应用。首先,介绍了 LIB 的主要成分、工作原理和特点。然后,讨论了 COF 的优点、应用和合成方法。最后,重点介绍了 COF 根据主要特点和相关挑战在 LIB 各个部分中的应用。在这篇评论中,我们专注于通过引入和开发COF作为新一代储能应用材料来改进电池,以克服当前的局限性并为当前的LIB提供有前途的替代品。
硼酸酯连接的 2D COF 薄膜具有低介电常数,室温下沿层状孔隙的热导率为 ∼ 1 W m − 1 K − 1(图 1),标志着材料设计的新范式,该范式结合了相对较高的热导率和较低的质量密度。在此,我们通过证明 3D COF 的相互渗透通过超分子相互作用显着提高其热导率,同时保持其低弹性模量,进一步增强了 COF 的卓越属性。这将互穿 COF 定位为具有机械柔性和导热性的轻质材料,这种物理特性的组合通常在大多数材料系统中都找不到,如图 1 所示。尽管过去已经合成了互穿或缠结的 3D COF 网络,18 – 23 但尚未研究交织多个 COF 晶格对所得物理特性(例如其机械和热特性)的影响。这与它们的近亲 MOF 形成了鲜明对比,在 MOF 中,互穿的影响不仅被证明会导致复杂结构的形成,24 – 27 而且与单个 MOF 晶格相比,还与增强的稳定性、增加的结构柔性和更高的气体吸附有关。28,29 此外,理想化的 MOF 的互穿还被证明可以通过额外的传热通道来提高其热导率。 30,31
摘要:二维共价有机框架(2D COF)含有杂型琴,从理论上鉴定为具有可调的,dirac-cone的带状结构的半导体,预计可为下一代弹性电子的高电荷运输能力提供理想的高电荷机动性。但是,这些材料的批量合成很少,现有的合成方法提供了对网络纯度和形态的有限控制。在这里,我们报告了苯甲酮 - 伊米氨酸保护的氮基因(OTPA)(OTPA)和苯二噻吩二醛(BDT)之间的转介反应,该苯二醛(BDT)提供了一个新的半导体COF网络OTPA-BDT。将COF作为多晶粉和具有控制晶体方向的薄膜。暴露于适当的P型掺杂剂Tris(4-溴苯基)六氯乙酸苯甲酸苯二氧化苯甲酸酯后,将氮化基因淋巴结很容易被氧化为稳定的自由基阳离子,此后,网络的结晶度和方向得以维持。面向孔掺杂的OTPA-BDT COF膜表现出高达1.2×10 –1 s cm –1的电导率,这是迄今为止据报道的最高报告的亚胺连接2D COF。
二维(2D)材料长期以来一直是材料科学的焦点,这是由于其高度可调的化学结构,均匀的孔径分布和内在的传输途径。在过去的二十年中,突破性的2D材料的出现,包括石墨烯,过渡金属二分法(TMDC),分层双氢氧化物(LDHS),金属氮化物/碳化物(MXENES),金属 - 有机框架(MOFS)和远处的有机框架(MXENES),以及赖以生成的框架(MOFS),以及赖因构架(COFS),并列出了赖因(COFS),并将其延伸 - 本期特刊旨在探索和最大化2D材料在气体捕获和分离中的潜力,以理论和基于模拟的进步进行桥接实验演示。通过促进一种系统的方法来采用2D材料来进行高效,低能的膜工艺,我们希望为其工业实施和未来创新建立全面的基础。
共价有机骨架 (COF) 是具有固有孔隙率的晶体材料,可在各个领域提供广泛的潜在应用。然而,COF 研究领域的主要目标是实现最稳定的热力学产物,同时达到实现特定功能所必需的尺寸和结构。虽然在 2D COF 的合成和加工方面取得了重大进展,但可加工的 3D COF 纳米晶体的开发仍然具有挑战性。本文介绍了一种在环境条件下生产可加工的亚 40 纳米 3D COF 纳米粒子的水基纳米反应器技术。值得注意的是,这项技术不仅提高了合成的 3D COF 的可加工性,而且还揭示了它们在以前未探索过的领域(如纳米/微型机器人和生物医学)中的应用令人兴奋的可能性,这些领域受到较大晶体的限制。
共价有机骨架 (COF) 是具有固有孔隙率的晶体材料,可在各个领域提供广泛的潜在应用。然而,COF 研究领域的主要目标是实现最稳定的热力学产物,同时达到实现特定功能所必需的尺寸和结构。虽然在 2D COF 的合成和加工方面取得了重大进展,但可加工的 3D COF 纳米晶体的开发仍然具有挑战性。本文介绍了一种在环境条件下生产可加工的亚 40 纳米 3D COF 纳米粒子的水基纳米反应器技术。值得注意的是,这项技术不仅提高了合成 3D COF 的可加工性,而且还揭示了它们在以前未探索过的领域(如纳米/微型机器人和生物医学)中的应用令人兴奋的可能性,这些领域受到较大晶体的限制。
请简单介绍一下您的研究背景,以及您是如何对多孔材料和 COF 的化学产生兴趣的。我在加州大学洛杉矶分校的 Fraser Stoddart 小组接受了超分子化学家的培训,当时我使用共价键和非共价键来组织电子供体和受体。我的博士后研究是使用点击化学在 Barry Sharpless 的小组中制造超强粘合聚合物。该小组以开创非常传统的有机化学而闻名。后来,该小组对有机反应有了不同的认识,他们使用非常简单但高效的化学方法来制造有用的材料。我认为这是一个非常重要的观点。我从研究生院开始就对有机电子学产生了浓厚的兴趣,搬到伯克利实验室后开始从事该领域的工作。我对 COF 和多孔材料产生了兴趣,因为我觉得这是一个网状平台,可以通过选择适当的构建块和化学方法来操纵电荷载体。我做了很多线性共轭聚合物方面的工作。 COF 是一种有序的高维聚合物系统,具有非常明确的结构控制。特别是 2D COF 让人联想到其他 2D 材料,如石墨烯和过渡金属二硫属化物,其中结构各向异性起着根本作用。这就是我感兴趣并进入该领域的原因。该领域建立在动态共价化学概念之上,这也是我对 COF 感兴趣的另一个原因,因为动态共价化学代表了超分子化学的前沿,也是我的爱好之一。
由于其高灵敏度、低毒性、良好的空间和时间分辨率、发射可调、操作简单和非侵入性,它被广泛用于成像。6 用于缺氧成像的荧光探针通常以癌症标志物为目标,特别是与缺氧相关的还原酶。在缺氧肿瘤微环境中,还原酶(如偶氮还原酶和硝基还原酶)过度表达。偶氮基团是对偶氮还原酶敏感的部分,而硝基咪唑是对硝基还原酶敏感的部分。已经开发出各种小分子荧光团用于缺氧条件成像 7 然而,纳米材料由于增强的渗透性和保留 (EPR) 效应而能够实现被动肿瘤积聚和保留。8 这促使人们研究各种用于缺氧成像的纳米材料,9 但非常适合的共价有机框架 (COF) 却被忽视了。由于其纯有机性质、结构和功能可调性、以及可用于药物输送的多孔性,COF 是细胞状况成像的有力候选者。目前仅对少数 COF 进行了生物成像研究,其中细胞成像主要利用材料固有的荧光 10,11 或依靠共轭部分的荧光实现,例如染料标记的核酸 12,13 和荧光探针。14 关于使用 COF 对任何特定细胞状况进行成像的报道更是凤毛麟角。15 在此,我们设计并表征了一种具有硝基还原酶敏感部分的 COF,用于缺氧荧光成像。我们在 b -酮烯胺化学的帮助下合成了一种荧光 COF,16 并在合成后对其进行修饰,以结合硝基咪唑,用于靶向肿瘤缺氧条件下的硝基还原酶。 2-硝基咪唑衍生物是电子缺乏的化合物,已知可作为外源性缺氧标记物,经过生物还原活化后选择性地被缺氧细胞捕获(图 S1,ESI†)。17 由此获得的硝基咪唑 COF(NI-COF)在生理条件下稳定,在中性 pH 和肿瘤组织特有的酸性 pH 水平下均表现出有用的荧光特性,发射峰位于 480 nm(l ex = 420 nm)。利用其低细胞毒性,我们将 NI-COF 用作荧光成像