摘要:归因于独特的拓扑复杂性和优雅的美丽,Borromean系统引起了强烈的关注。然而,目前,硼有机聚合物的建造仍然是一个挑战。为了应对这一巨大的挑战,我们开发了一种超分子 - 诱导的方法来制造硼链链接的有机聚合物。尼古拉德式构建块,具有线性脱氧基础块,构建两个稀有的共价有机框架(COFS),具有高结晶度和坚固的结晶度和坚固的结晶度和坚固型,犹太人选择的三角锥体构件(1,3,5- tris(4-氨基苯基))的溶剂热凝结反应。 结构完善揭示了纠缠2D的成功形成! 2D硼阵列结构。 这两个COF都是微孔的,因此证明了气体分离的潜力。 成功合成了前两个Borromean连接的有机聚合物,铺平了大道,将超分子合成驱动的方法扩展到其他构件和拓扑,并扩大了COF的家庭和范围。犹太人选择的三角锥体构件(1,3,5- tris(4-氨基苯基))的溶剂热凝结反应。结构完善揭示了纠缠2D的成功形成!2D硼阵列结构。这两个COF都是微孔的,因此证明了气体分离的潜力。成功合成了前两个Borromean连接的有机聚合物,铺平了大道,将超分子合成驱动的方法扩展到其他构件和拓扑,并扩大了COF的家庭和范围。
由密切包装配体形成的非孔产物。用于比较,金属 - 具有协调键和共价键的有机框架(MOF)和共价有机框架(COF),可以基于网状化学的合理设计和合成。18,19因此,它需要一种新的合成方法来控制HOF的形成并丰富它们的结构多样性。模板合成一直是构建多孔材料(例如MOF和COF)的重要策略。例如,通过合成后的金属化/脱位,20,21金属交换,22 - 24或配体交换25 - 28已被广泛用于获得具有与MOF-emplate相同结构/拓扑的靶向功能MOF。这些模板合成利用了可逆的协调键,这些键可以在合成后的修改过程中破坏和改革。可逆协调键也已用于模板COFS 29和多孔聚合物的合成。30 - 32 Yaghi及其同事证明了一个代表性的例子,这些示例使用了Cu I-苯噻吩会协调部分的可逆形成/断裂来构建具有编织结构的COF。29铜中心在COF结构内的编织上是独立的,并用作将螺纹带入编织模式的模板,而不是更常见的平行排列。可以在不破坏COF结构的情况下去除弱的cu i。这些作品激发了我们使用协调债券指导HOF的组装。要实现协调键指导的HOF合成的设计,基于弱协调键的MOF将为
对表面上的冰和石灰尺度晶体的不必要积聚是对重大经济和可持续性的长期挑战。被动抑制液体液体表面的糖霜和缩放通常不足,在恶劣条件下容易受到表面衰竭的影响,并且不适合长期/现实生活中的使用情况。这样的表面通常需要多种功能,例如光学透明度,可靠的冲击电阻以及防止低表面能液体污染的能力。不幸的是,最有前途的进步依赖于使用生物持久性和/或剧毒的每种氟化化合物。在这里表明有机,网状介孔结构,共价有机框架(COF)可能是溶液。通过利用无缺陷COF的简单且可扩展的合成和合理的合成后功能化,制备了精确的纳米齿状(形态学)的纳米涂层,可以抑制分子水平的成核而不会损害相关污染的预防和鲁棒性。结果是一种简单的策略,以利用纳米配置效应,这显着延迟了表面上冰和尺度形成的成核。冰核被抑制至-28°C,在过饱和条件下避免了尺度的形成> 2周,并且在韦伯数字上影响的有机溶剂的射流> 10 5也被抗光透明度(> 92%)的表面抵抗。
锂离子电池(LIBS)由于其高能密度和可再生能力而在便携式电子,电动汽车和可再生能源系统中充当广泛的储能解决方案。共价有机框架(COF)在LIBS中具有有希望的潜力,通过提高电导率,稳定性和容量保留率提高了电池性能,从而为更高效,更可持续的能源存储技术铺平了道路。在此贡献中讨论了基于COF的LIBS研究中理论建模和仿真方法的优势。从有限元分析(FEA)用于机械透视的到密度功能理论(DFT),用于电子结构注意事项和计算流体动力学(CFD),用于电解质和热行为模拟,本研究展示了所使用的多样化工具包。电化学阻抗光谱(EIS)建模和机器学习(ML)的整合进一步增强了锂电池内对电化学过程和数据分析的理解。对建模和模拟基于COF的阳极,阴极,电解质和分离器的特定关注。本评论阐明了COF在革新锂电池技术革命性的潜力以及计算方法在推进其发展中的重要性。
摘要:与传统的湿化学合成技术相比,超高真空条件下有机网络的表面合成几乎没有控制参数。分子沉积速率和基底温度通常是唯一需要动态调整的合成变量。本文我们证明,无需专用源,仅依靠回填氢气和离子规细丝即可创造和控制真空环境中的还原条件,并且可以显著影响用于合成二维共价有机骨架(2D COF)的类 Ullmann 表面反应。使用三溴二甲基亚甲基桥连三苯胺 [(Br 3 )DTPA] 作为单体前体,我们发现原子氢 (H • ) 会严重阻碍芳基 − 芳基键的形成,我们怀疑该反应可能是限制通过表面合成产生的 2D COF 最终尺寸的一个因素。相反,我们表明,控制相对单体和氢通量可用于生产大型自组装单体、二聚体或大环六聚体岛,这些单体、二聚体或大环六聚体本身就很有趣。从单一前体表面合成低聚物可避免湿化学合成时间长和沉积源多的潜在挑战。使用扫描隧道显微镜和光谱 (STM/STS),我们表明,通过此低聚物序列的电子状态变化提供了对 2D COF(在没有原子氢的情况下合成)的深刻见解,这是单体电子结构演变的终点。关键词:扫描隧道显微镜 (STM)、共价有机骨架 (COF)、三角烯、异三角烯、DTPA、自组装单层 (SAM)
[3],ATK [4],Quantum Espresso [5,6],EPW [7],Per-Turbo [8])并稳步增加硬件资源。对于单位细胞中有大量原子的系统,例如共价有机框架(COFS)[9],使用AB ITIBL方法仍然具有挑战性。尤其是在需要对许多此类材料进行高通量筛选的情况下,需要替代方法。密度的功能紧密结合(DFTB)[10]是一种方法,因为它有效地降低了密度功能理论(DFT)的复杂性,将Kohn – Sham方程式施加到紧密结合形式中。该方法现在富含扩展[11],并已成功地用于研究各种材料的电子和结构特性。一个非详尽的列表包括有机聚合物,COF [12]和生物分子系统[13],过渡金属氧化物(Tio 2 [14],Zno [15]),MOS 2膜和纳米结构[16],Gra-Phene缺陷[17]和Allotropes。它专门用于研究几种无机材料(Si,SiC,Ag,au,Fe,Mg,Mg)的纳米颗粒和纳米棒的结构和电子,对于DFT计算,其大小不可行。Green的DFTB功能扩展已用于研究弹道性纳米结构中的电子和声子传输[18]。在这项贡献中,我们关注放松时间近似中的Boltzmann转移理论。为此,我们首先从一般的非正交紧密结合的汉顿(Ham-iLtonian)开始得出电子 - 音波耦合的表达。因此,我们的结果适用于DFTB和其他
摘要:乙醇已成为化石燃料的一种有希望的替代品,但其使用可以导致润滑剂的大量稀释,尤其是在冷启动或交通繁忙的过程中。这种稀释会影响添加剂的性能,包括摩擦性修饰剂等摩擦二硫代氨基甲酸酯(MODTC),旨在减少在极端接触条件下的摩擦。先前的研究表明,乙醇可能会影响MODTC的性能,促使该研究的目的是研究乙醇对MODTC TRIPOFILMS的影响及其在边界润滑条件下的摩擦反应。因此,用含有不同乙醇浓度的MODTC的完全配方的润滑剂进行了互助摩擦学测试。结果表明,临界乙醇稀释水平通过MODTC激活抑制危害降低,从而导致类似于基础油的摩擦系数(COF)。用多乙二醇(PAO) + MODTC简单混合物测试的表面显示出与添加乙醇的COF增加。使用拉曼光谱法,X射线光电子光谱(XPS)和X射线吸收光谱在边缘结构(XANES)附近分析测试表面,揭示了硫酸盐,MOO 3,MOS 2,MOS 2和MOS X O Y化合物在与乙醇稀缺的表面上形成的互动化合物中的互动化合物。然而,乙醇的添加增加了互感的硫酸盐和MOO 3含量,而牺牲了诸如MOS 2和MOS X O Y之类的减少摩擦化合物。关键字:钼二硫代氨酸(MODTC);乙醇; TROBOFILM;摩擦修饰符;添加剂;润滑剂这些发现表明,含有MODTC的润滑剂中的乙醇稀释会产生富含氧气的界面培养基,有利于形成具有不足摩擦能力的化合物的形成。
摘要 与通过强配位或共价键组装的金属有机骨架(MOF)和共价有机骨架(COF)不同,基于非共价相互作用的新型多孔有机分子材料由于其结构单元简单、超分子组装的灵活性而备受关注。非共价π-堆叠有机骨架(πOF)是多孔材料的一个子类,由有机构件通过π-π相互作用自组装形成的晶体网络组成。π-π相互作用和π-离域超分子骨架的柔性、可逆和导电特性赋予πOF有利的属性,包括溶液可加工性、自修复能力、显著的载流子迁移率和优异的稳定性。这些特性使πOF成为气体分离、分子结构测定和电催化等应用的理想选择。自2020年该概念提出以来,πOF的化学和应用都取得了重大进展。未来的研究应侧重于扩大其结构多样性和探索新的应用,特别是在传统多孔材料遇到局限性的领域。[1, 2]。
抽象理性设计的多晶型体系结构用于增强光动力学疗法(PDT),由于它们在轻度介导的活性产生的活性氧物种上具有巨大潜力,因此最近几年引起了显着的关注。但是,结构设计与其PDT性能之间仍然存在差距。This tutorial review provides a historical overview on (i) the basic concept of PDT for deeply understanding the porphyrin-mediated PDT reactions, (ii) developing strategies for constructing porphyrinic architectures, like nanorings, boxes, metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), vesicles, etc., where we classified into the following three类别:多晶林阵列,卟啉框架和其他卟啉组件,(iii)临床癌症治疗和抗菌感染的各种应用方案。此外,末端部分提到了有关临床PDT应用的卟啉架构创新的现有挑战和未来观点。更重要的是,具有原子质结构的卟啉式纳米材料为研究结构与PDT Outs之间的关系提供了理想的平台,设计个性化的“一对一” Theranostic Agents,以及在多种生物医学领域中的普及和应用。
ai人工智能ASAT ASAT ASAT ASAT ASAT ASAT ARSP ARTEMIS太空计划CAT计算机轴向断层扫描CFS COFS COMPONWEALTH FUSION FUSION SYSTEM European Telecommunications Satellite Organization EU The European Union FAA Federal Aviation Administration (USA) FAI Federation Aeronautique Internationale GDP Gros Domestic Product GEO Geosynchronous Orbit GPS Global Positioning System GPT-4 Generative Pre-trained Transformer H3 Helium-3 HLS Human Landing System (Artemis Program) IAF International Astronautical Federation IIOSC Intersputnik International Organization of Space Communications IISL International Institute of Space Law IMF International Monetary Fund ISA International Seabed Authority ISAS Institute of Space and Astronautical Science ISS International Space Station JAXA Japan Aerospace and Exploration Agency JSA Japan Space Act LC Liability Convention LED Light Emitting Diode LEO Low Earth Orbit LLM Large Language Model Lux Luxembourg M3 Moon Mineralogy Mapper MOU Memorandum of Understanding MRI Magnetic Resonance Imaging MT Moon Treaty NAL National Aerospace NASA实验室国家航空航天管理局(美国)NIF国家点火设施