费城——2024 年 4 月 4 日——iECURE, Inc. 是一家基因编辑公司,专注于开发与突变无关的体内基因插入或敲入编辑疗法,用于治疗具有重大未满足需求的肝脏疾病。该公司今天宣布,其用于治疗鸟氨酸转氨甲酰酶 (OTC) 缺乏症的 ECUR-506 的新药临床试验 (IND) 申请已获得美国食品药品监督管理局 (FDA) 的批准。ECUR-506 将在 OTC-HOPE 研究中接受评估,研究对象为经基因确认的新生儿发病 OTC 缺乏症的男性新生儿。此前,英国药品和保健品管理局 (MHRA) 和澳大利亚治疗用品管理局 (TGA) 已批准 OTC-HOPE 研究开始。iECURE 首席执行官 Joe Truitt 表示:“通过此次 IND 批准,我们现在正在三个国家不同地理区域(美国、英国和澳大利亚)启动试验点,这将方便家庭参加这项具有里程碑意义的临床试验。” “我们正在努力开放试验场地,以便开始招募患者进行给药。该试验将接受来自世界各地的符合条件的新生儿发病 OTC 缺乏症男婴,我们希望通过这次试验看到积极的安全数据和疗效迹象。” OTC-HOPE 研究是一项 1/2 期首次人体研究,研究对象为经基因证实的新生儿发病 OTC 缺乏症的新生男性。该研究的主要目的是评估 ECUR-506 单剂量静脉注射后的安全性和耐受性。次要目标是评估 ECUR-506 的药代动力学和疗效。此外,探索性终点将评估疾病特异性生物标志物、发育里程碑和生活质量。 ECUR-506 项目是美国首个获准在婴儿身上进行研究的体内基因插入项目,也是 ARCUS® 核酸酶首次用于在临床中为功能性基因提供体内插入点。 iECURE 首席医疗官 Gabriel M. Cohn 医学博士表示:“对于患有严重新生儿发病 OTC 缺乏症的新生儿,临床研究和治疗方案的需求非常大。”“对于许多孩子被诊断患有新生儿发病 OTC 缺乏症的家庭来说,肝移植是唯一的治愈选择,但它伴随着严重的风险,需要大量的免疫抑制疗法来防止移植排斥。 ECUR-506 代表着一种希望,即有可能让儿童在长期内产生功能性 OTC 酶,而无需移植。”“这一里程碑是我实验室 8 年多临床前研究的成果,旨在解决严重罕见肝脏代谢疾病的基因编辑策略,”Rose 医学博士 James M. Wilson 博士说。
使用CRISPR Prime编辑Steven Erwood 1,2,Teija M.I.的饱和变体解释。bily 2,†,Jason Lequyer 1,3,†,Joyce Yan 2,Nitya Gulati 1,2,Reid A.Brewer 2,4,Liangchi Zhou 2,Laurence Pelletier 1,3,Evgueni A. Ivakine 2,4,*,Ronald D. Cohn 1,2,4,5 1。加拿大多伦多多伦多大学分子遗传学系2.遗传学和基因组生物学计划,加拿大安大略省多伦多的病儿童研究所医院3.Lunenfeld-Tanenbaum研究所,加拿大安大略省多伦多山医院4.加拿大多伦多多伦多大学生理学系5。多伦多大学儿科和生病儿童医院,加拿大多伦多的医院†这些作者在过去十年中向Zhenya.ivakine@sickkids.ca摘要贡献了同样的贡献,在过去的十年中,下一代测序在临床实践中已广泛实施。 然而,由于经常确定具有不确定意义的遗传变异(VU),因此对这种变体的缩放功能解释的需求变得越来越明显。 一种解决此问题的方法是饱和基因组编辑(SGE),它允许对单核苷酸变体进行缩放的多重功能评估。 但是,SGE的当前应用依赖于同源指导的维修(HDR)引入感兴趣的变体,这受到较低的编辑效率和低产品纯度的限制。 此外,我们设计了一种基因组编辑策略,该策略允许基因基因座的单倍体化,该策略允许几乎任何细胞类型中的孤立变体解释。多伦多大学儿科和生病儿童医院,加拿大多伦多的医院†这些作者在过去十年中向Zhenya.ivakine@sickkids.ca摘要贡献了同样的贡献,在过去的十年中,下一代测序在临床实践中已广泛实施。然而,由于经常确定具有不确定意义的遗传变异(VU),因此对这种变体的缩放功能解释的需求变得越来越明显。一种解决此问题的方法是饱和基因组编辑(SGE),它允许对单核苷酸变体进行缩放的多重功能评估。但是,SGE的当前应用依赖于同源指导的维修(HDR)引入感兴趣的变体,这受到较低的编辑效率和低产品纯度的限制。此外,我们设计了一种基因组编辑策略,该策略允许基因基因座的单倍体化,该策略允许几乎任何细胞类型中的孤立变体解释。在这里,我们对SGE进行了改编的CRISPR质量编辑,并证明了其在理解溶酶体储存障碍尼曼 - 佩克病C1(NPC)的NPC1基因中变体的功能意义的实用性。通过将饱和素编辑(SPE)与临床相关的测定相结合,我们在NPC1单倍体HEK293T细胞中的功能评分和解释了256种变体。为了进一步证明该策略的适用性,我们使用SPE和细胞模型单倍体化在BRCA2基因中的功能上为465个变体分数。我们预计我们的工作将可以翻译成具有适当的细胞测定法的任何基因,从而可以更快,准确地诊断,改善遗传咨询,并最终确切地精确的患者护理。引言精度或个性化药物必然是基于对人群中发现的遗传变异的强烈理解。因此,人类疾病基因中发现的VU的优势是实现
讨论参与者Troy Barring,首席执行官兼创始人,TAB Diagnostic。TAB Diagnostic,Inc。是一种非侵入性糖尿病测试和监测公司,开发了第一个基于便携式唾液的测试,重点是针对少数民族的检测,其风险是A1C测试对于诊断或监测可能不可靠。由于Tab DX唾液测试是实时的,不需要针,并且是一种低成本的方法,因此其易于获取样品的易用性可以解决少数族裔早期糖尿病筛查诊断的基础设施和经济差异。Troy从美国军事学院毕业后在美国陆军担任装甲官。他已经结婚了31年,育有三个成年子女。Troy has 25+ years of senior leadership experience in both small and large companies in General Management, Sales & Marketing, Clinical, R&D and Operations and has managed P&L's up to $400M+ with a track record of delivering on complex key strategic platform technologies (devices, hardware, software, pharma), from concept to commercialization at large companies like Johnson & Johnson, Boston Scientific and Baxter, as well as small companies like Avita Medical (耗资6000万美元+Barda的合同)。Troy在Sorin Biomedical的医疗保健行业开始了他的职业生涯,并从加利福尼亚州马里布市Pepperdine University获得了高管MBA,重点是战略规划。他从西点美国军事学院获得了机械工程学士学位。vicki的作用涉及促进行业与教育之间的合作,以建立可持续的计划,使求职者为生活工资职位做好准备。Vicki Brannock,Biocom California Institute劳动力战略与创新高级总监The Biocom California Institute是一个非营利组织,其使命是在生命科学领域培养多样化的人才管道。在她在该研究所任职之前,Vicki是Brandman University继续教育学校的课程高级总监。此外,她曾担任圣地亚哥劳动力合作伙伴计划的计划主任,该组织通过全国劳动力委员会的开拓者奖获得了国家认可,并赞扬其对创新编程和培训的开创性贡献。vicki致力于通过培训明天的劳动力,并为传统上代表性不足的人群提供生命科学领域的劳动力来协助企业。Melanie Cohn,Biocom California Melanie地区政策与政府事务高级主任,自2014年以来一直在加利福尼亚州Biocom;她管理并实施了我们在圣地亚哥,大洛杉矶和湾区的地区政策议程。她主动游说公职人员,以促进加利福尼亚生物群落成员的利益,并确保考虑新和现有城市和县政策的生命科学行业。
∗ 本文的早期版本题为“超越无限:通过逻辑紧凑性扩展经济理论”,以一页摘要的形式出现在第 21 届 ACM 经济与计算会议论文集上。我们感谢 David Ahn、Bob Anderson、Morgane Austern、Archishman Chakrabortyz、Chris Chambers、Yunseo Choi、Henry Cohn、Piotr Dworczak、Andrew Ellis、Tam´as Fleiner、Drew Fudenberg、Wayne Gau、Jerry Green、Joseph Halpern、Ron Holzman、Ravi Jagadeesan、M. Ali Khan、David Laibson、Rida Laraki、Bar Light、Elliot Lipnowski、Ce Liu、George Mailath、Michael Mandler、Paul Milgrom、Ankur Moitra、Yoram Moses、Juan Pereyra、Marek Pycia、Debraj Ray、John Rehbeck、Phil Reny、Joseph Root、Ariel Rubinstein、Dov Samet、Chris Shannon、Tomasz Strzalecki、Sergiy Verstyuk、Rakesh Vohra、Shing-Tung Yau、Bill Zame 以及众多研讨会观众有帮助的评论。 Gonczarowski 的部分资助来自以色列科学与人文学院的亚当斯奖学金项目;他的工作部分资助来自以色列科学院管理的 ISF 拨款 1435/14、317/17 和 1841/14;美国-以色列双边科学基金会(BSF 拨款 2014389);以及欧洲研究理事会 (ERC) 的欧盟地平线 2020 研究与创新计划(拨款编号 740282)和欧盟第七框架计划 (FP7/2007-2013)/ERC 拨款编号 337122。Kominers 非常感谢美国国家科学基金会(拨款 SES-1459912)以及哈佛大学数学科学与应用中心的 Ng 基金和经济学数学研究基金的支持。 Shorrer 得到了美国-以色列双边科学基金会 (BSF 拨款 2016015 和 2022417) 的资助。这项工作的一部分是在西蒙斯劳弗数学科学研究所 2023 年秋季市场和机制设计的数学和计算机科学项目期间进行的,该项目由美国国家科学基金会资助,拨款编号为 DMS-1928930,由阿尔弗雷德 P. 斯隆基金会资助,拨款编号为 G-2021-16778。† 哈佛大学经济学系和计算机科学系 — 电子邮件:yannai@gonch.name。Gonczarowski 的部分工作是在耶路撒冷希伯来大学、特拉维夫大学和微软研究院进行的。‡ 哈佛商学院创业管理部;哈佛大学经济学系和 CMSA;和 a16z crypto — 电子邮件:kominers@fas.harvard.edu。§ 宾夕法尼亚州立大学经济学系 — 电子邮件:shorrer@psu.edu。
费城——2024 年 3 月 6 日——iECURE, Inc. 是一家基因编辑公司,专注于开发与突变无关的体内基因插入或敲入编辑疗法,用于治疗具有重大未满足需求的肝脏疾病,该公司今天宣布,英国药品和保健产品管理局 (MHRA) 批准该公司的临床试验授权申请 (CTA),将 OTC-HOPE 研究扩展到英国。OTC-HOPE 研究正在研究 ECUR-506,这是一种基于基因编辑的试验性疗法,用于治疗婴儿的鸟氨酸转氨甲酰酶 (OTC) 缺乏症。MHRA 批准的 CTA 是此前澳大利亚治疗用品管理局 (TGA) 批准开始 OTC-HOPE 研究的结果。 “ECUR-506 是有史以来第一个基于临床巨核酸酶的体内基因插入项目,随着我们继续推进 ECUR-506 首次人体给药,MHRA 和 TGA 对该项目充满信心,我们对此充满信心,”iECURE 首席执行官 Joe Truitt 表示。“在整个 2024 年,我们将继续与其他监管机构保持密切联系,寻求将 OTC-HOPE 研究扩展到更多地区。我们正在确保试验点准备好招募患者,并预计在未来几个月内启动试验点。” OTC-HOPE 研究是一项 1/2 期首次人体研究,研究对象为经基因证实患有新生儿发病 OTC 缺陷的新生男性。该研究主要旨在评估单剂量静脉注射 ECUR-506 后最多两个剂量水平的安全性和耐受性。次要目标是评估 ECUR-506 的药代动力学和疗效。此外,探索性终点将评估疾病特异性生物标志物、发育里程碑和生活质量。iECURE 首席医疗官 Gabriel M. Cohn 医学博士表示:“OTC 缺乏症是一种严重的遗传性代谢紊乱,在大多数严重情况下,需要肝移植。ECUR-506 如果获得批准,将作为一种替代治疗方法为受这种危及生命的疾病困扰的家庭带来希望。通过基因编辑,我们相信 ECUR-506 可以使这些儿童持久产生功能性 OTC 酶,从而提供持久的临床益处,并消除肝移植的需要和防止器官排斥所需的终生免疫抑制治疗。”关于 ECUR-506 iECURE 对其初始项目(包括 OTC 缺乏症)的基因编辑方法依赖于两种腺相关病毒 (AAV) 衣壳的递送,每种衣壳都携带不同的有效载荷。 ECUR-506 包含两个载体,一个是 ARCUS® 核酸酶载体,用于靶向已鉴定的 PCSK9 基因位点的基因编辑,另一个是供体载体,用于插入所需的功能性 OTC 基因。iECURE 已从 Precision BioSciences 获得 ECUR-506 的 ARCUS 核酸酶许可。1 PCSK9 位点的切口可作为 OTC 基因的插入位点,为健康基因的永久表达提供潜在途径。 ECUR-506 正在 OTC-HOPE 研究中进行研究,这是第一个基于临床巨核酸酶的体内基因插入计划。关于 OTC-HOPE 研究
历史上,传染病给人类带来了沉重的打击。历史一再警告我们,一种致命的病原体就能杀死数百万人。14 世纪席卷欧亚大陆的黑死病大流行夺走了多达 1 亿人的生命( Cohn,2008 ),1918 年的西班牙流感在不到 2 年的时间内夺走了 5000 多万人的生命( Taubenberger and Morens,2019 )。这种情况在 20 世纪开始发生变化,抗生素和疫苗这两项了不起的成就拯救了数亿人的生命,使他们免于致命感染。如果我们没有针对天花、黄热病、脊髓灰质炎和其他致命病原体的疫苗,难以想象会有多少人丧生。如果我们没有抗生素,外科病房会发生什么情况则令人难以想象。一个令人愉快的巧合是,导致这些巨大成功的工具和技术往往是由微生物本身提供的:抗生素是由细菌和真菌产生的,疫苗通常是减毒或灭活的微生物。同样令人着迷的是,包括病毒和细菌在内的微生物教会了我们分子语言,让我们理解生命最基本的过程,并启发我们开发强大的生物技术来预防和治疗各种危及生命的感染。现代健康科学的一个支柱是 DNA 生物学和重组 DNA 技术。正是细菌和病毒教会了我们 DNA 是遗传物质,以及 DNA 基因表达是如何执行和调控的。更值得庆幸的是,我们还从这些微生物那里获得了解码 DNA 序列和设计 DNA 克隆的分子工具。如今,下一代测序和元数据分析彻底改变了我们在诊断、预防和治疗层面管理传染病的方式。尽管取得了这些突破性的成就,但传染病仍然给公共卫生带来沉重的负担,每年造成 1000 万至 1500 万人死亡。为证明这一严重的全球影响,世界卫生组织 (WHO) 于 2019 年公布的全球十大健康威胁中有六项与传染病有关 (https://www.who.int/emergencies/ten-threats-to-global-health-in-2019)。这六大威胁包括全球流感大流行、抗生素耐药性、埃博拉和其他高威胁病原体、疫苗犹豫、登革热和艾滋病毒 (HIV)。这些传染性病原体和相关问题位列全球卫生挑战之首并非偶然。人类历史上经常发生流感疫情。我们根本无法从人类中根除流感病毒,部分原因是它们会从鸟类和其他动物的天然宿主偶尔传播给人类 (Olsen 等人,2006 年)。生产有效的季节性流感疫苗已经是一个挑战,这将是一项更加艰巨的任务,预测和准备应对不可预测但即将来临的流感大流行,这在目前并非不可能。几十年来,我们一直受益于抗生素的使用。然而,过度使用抗生素和其他不良医疗习惯加速了耐药细菌的出现。如果没有可持续的新抗生素渠道,也没有其他有效的细菌感染治疗方法,我们可能会死于多重耐药致病菌(也称为超级细菌)引起的感染。据美国疾病控制和预防中心报道,仅在美国,每年就有 35,000 人死于抗生素耐药性细菌感染。
[1] Ryan S. Baker。2024。大数据和教育(第8版)。宾夕法尼亚州费城宾夕法尼亚大学。 [2] Ryan S. Baker和Aaron Hawn。2022。教育算法偏见。国际人工智能杂志教育杂志(2022),1-41。[3] Solon Barocas,Andrew D Selbst和Manish Raghavan。2020。反事实解释和主要原因背后的隐藏假设。在2020年公平,问责制和透明度会议的会议记录中。80–89。[4] Alex J Bowers和Xiaoliang Zhou。2019。曲线下的接收器操作特征(ROC)区域(AUC):一种评估教育结果预测指标准确性的诊断措施。受风险的学生教育杂志(JESPAR)24,1(2019),20-46。[5] Oscar Blessed Deho,Lin Liu,Jiuyong Li,Jixue Liu,Chen Zhan和Srecko Joksimovic。2024。过去!=未来:评估数据集漂移对学习分析模型的公平性的影响。IEEE学习技术交易(2024)。[6] Olga V Demler,Michael J Pencina和Ralph B D'Agostino Sr. 2012。滥用DELONG测试以比较嵌套模型的AUC。医学中的统计数据31,23(2012),2577–2587。[7] Batya Friedman和Helen Nissenbaum。1996。计算机系统中的偏差。信息系统(TOIS)的ACM交易14,3(1996),330–347。[8]乔什·加德纳,克里斯托弗·布鲁克斯和瑞安·贝克。2019。225–234。通过切片分析评估预测学生模型的公平性。在第9届学习分析与知识国际会议论文集。[9]LászlóA Jeni,Jeffrey F Cohn和Fernando de la Torre。2013。面对不平衡的数据:使用性能指标的建议。在2013年,俄亥俄州情感计算和智能互动会议上。IEEE,245–251。 [10] Weijie Jiang和Zachary a Pardos。 2021。 在学生等级预测中迈向公平和算法公平。 在2021年AAAI/ACM关于AI,伦理和社会的会议上。 608–617。 [11]RenéFKizilcec和Hansol Lee。 2022。 教育算法公平。 在教育中人工智能的伦理学中。 Routledge,174–202。 [12]JesúsFSalgado。 2018。 将正常曲线(AUC)下的面积转换为Cohen的D,Pearson的R PB,Ordds-Ratio和自然对数赔率比率:两个转换表。 欧洲心理学杂志适用于法律环境10,1(2018),35-47。 [13] Lele Sha,Mladen Rakovic,Alexander Whitelock-Wainwright,David Carroll,Victoria M Yew,Dragan Gasevic和Guanliang Chen。 2021。 在自动教育论坛帖子中评估算法公平性。 教育中的人工智能:第22届国际会议,AIED 2021,荷兰乌得勒支,6月14日至18日,2021年,第I部分。 Springer,381–394。 2024。 2023。 2018。IEEE,245–251。[10] Weijie Jiang和Zachary a Pardos。2021。在学生等级预测中迈向公平和算法公平。在2021年AAAI/ACM关于AI,伦理和社会的会议上。608–617。[11]RenéFKizilcec和Hansol Lee。2022。教育算法公平。在教育中人工智能的伦理学中。Routledge,174–202。[12]JesúsFSalgado。2018。将正常曲线(AUC)下的面积转换为Cohen的D,Pearson的R PB,Ordds-Ratio和自然对数赔率比率:两个转换表。欧洲心理学杂志适用于法律环境10,1(2018),35-47。[13] Lele Sha,Mladen Rakovic,Alexander Whitelock-Wainwright,David Carroll,Victoria M Yew,Dragan Gasevic和Guanliang Chen。2021。在自动教育论坛帖子中评估算法公平性。教育中的人工智能:第22届国际会议,AIED 2021,荷兰乌得勒支,6月14日至18日,2021年,第I部分。Springer,381–394。2024。2023。2018。[14]Valdemaršvábensk`Y,MélinaVerger,Maria Mercedes T Rodrigo,Clarence James G Monterozo,Ryan S Baker,Miguel Zenon Nicanor LeriasSaavedra,SébastienLallé和Atsushi Shimada。在预测菲律宾学生的学习成绩的模型中评估算法偏见。在第17届国际教育数据挖掘会议上(EDM 2024)。[15]MélinaVerger,SébastienLallé,FrançoisBouchet和Vanda Luengo。您的模型是“ MADD”吗?一种新型指标,用于评估预测学生模型的算法公平性。在第16届国际教育数据挖掘会议上(EDM 2023)。[16] Sahil Verma和Julia Rubin。公平定义解释了。在国际软件公平研讨会的会议记录中。1-7。[17] Zhen Xu,Joseph Olson,Nicole Pochinki,Zhijian Zheng和Renzhe Yu。2024。上下文很重要,但是如何?课程级别的性能和公平转移的相关性在预测模型转移中。在第14届学习分析和知识会议论文集。713–724。[18] Andres Felipe Zambrano,Jiayi Zhang和Ryan S Baker。2024。在贝叶斯知识追踪和粗心大意探测器上研究算法偏见。在第14届学习分析和知识会议论文集。349–359。