摘要。尽管对性能有重大影响,但很少研究太阳能电池中的热分布。此外,尽管INGAN太阳能电池的成就仍在实验室研究状态,但提出的工作致力于在细胞中出现的耦合现象的原始结果,这使得有可能强调新的可能的指南,以提高其效率。据我们所知,在文献中发表的INGAN太阳能电池中热耗散的大多数建模结果仅基于1-D模型,而不是3-D模型。因此,当前贡献中提出的结果是通过与Ingan太阳能电池中的热分布相关的Comsol多物理学3-D分析获得的。为此,我们与“半导体模块”,“固体的传热模块”和“ Wave Optics模块”耦合,使我们能够计算震荡 - 读取 - 读取孔加热,总热量,焦耳的速度,焦耳加热载体的浓度,电场的浓度,电场和Ingan Solar Solar Cylar Cyner in Ingan Solar Cellture in Ingan solar Cellture in Ingan Solar结构。这种方法可以通过确定导致性能下降的加热来源来优化设备稳定性。最后,这些模拟的原始结果表明,基于Ingan的太阳能电池在散发温度的潜力方面提供了很大的可能性,更一般而言,其应用兴趣与其良好的热力学行为相关。
摘要超导涡旋的动力学是由非线性部分微分方程描述的复杂现象。现代方法已启用了有趣的几何形状中模拟涡流动力学。本文包括用于分析超导涡流(例如通量量化和固定)不同现象的基本方法论的描述。该项目的目标是模拟3D中的涡流动力学,以估计不同超导零件中涡旋强度的耦合强度。这些耦合力可能会影响超导MEMS共振器的行为。本文中给出的估计值表明,两个板之间的涡流耦合力将足够重要,足以可测量。为了将本文中的方法与测量的材料参数相结合。
本研究探讨了MATLAB,COMSOL和PYTHON在精确工程中数学建模和模拟中的应用。这些工具在处理各种工程挑战(从控制系统到多物理模拟和自定义算法开发)方面的优势进行了分析。该研究还研究了人工智能(AI)的作用,在通过自动编码,提供概念解释和协助模型结构来支持数学建模任务中的作用。通过比较计算性能,准确性和可用性,该研究旨在确定适合不同模拟类型的最佳软件,例如热流体动力学和结构分析。调查结果强调了选择合适的软件来优化计算资源,验证模型并实现可靠,有效的仿真的重要性。本研究为弥合理论模型和实际应用之间的差距,提高生产率并促进精确工程的创新而贡献了实用指南。
在工业标记领域,连续喷墨技术以墨滴的高速发射为基础。发射出的墨滴形状是墨水特性和刺激操作点的结合,对打印质量有直接影响。本文通过使用 COMSOL Multiphysics ® 模拟多种粘度的液滴形状(正问题)并使用机器学习技术从液滴形状推断粘度(逆问题)来探索粘度的作用。此用例说明了如何设置机器学习逆问题解决策略的主要阶段:收集数据、选择和训练模型、测试模型并提高其预测能力。COMSOL Multiphysics ® 的灵活性使其易于与 Python 机器学习工具交互,从而高效地产生有价值的结果。
[1] A. A. A. Arsenault,B。DeSousa Alves,G。Giard和F. Sirois,«磁动力H -φ制剂,用于改善超导材料的数值模拟的收敛性和速度”,IEEETrans。应用。超级条件,第1卷。33,编号7,2023。https://doi.org/10.1109/tasc.2023.3293449
必须注意,这些方程是强烈的非线性。因此,与本示例相比,使用更细的网格或使用更高的元素顺序(尤其是在这样的完整3D模型中),以获取有关感兴趣的时间间隔具有一定程度可靠性的结果。这对于解决Ginzburg – Landau方程尤其重要,该方程描述了本质上混乱的现象。它们对初始值的扰动高度敏感,并且在时间依赖性解决方案过程中与数值错误相似。我们建议将四阶Hermite元素用于金茨堡 - 兰道方程。
摘要铜互连的缩放是一种有效的方法,可以增加信号I/O线的数量和电子系统的高级细分包装中的性能。然而,随着尺寸降低,铜互连导致电气诱导的故障的风险变得越来越关键,从而降低了现代微电子的可靠性和性能。高电流密度在电迁移中起着至关重要的作用,导致互连中金属原子的迁移,导致空隙或小丘的形成以及最终的设备故障。必须通过设计优化方法有效解决,以减少失败的风险并提高整体性能,焦耳的加热和当前的拥挤,这有两个重要的因素。最初是用于介电层的热氧化物(SIO 2)。但是,热氧化物的两个主要挑战是电性能和成本。在这种情况下,基于聚合物的电介质具有降低跟踪电容并提高功率效率的能力,同时与低成本面板可估算方法兼容的能力。,但聚合物的导热率较低。通过使用较薄的聚合物,可以降低由电流流量产生的铜相互连接中较低的导热率和随之而来的焦耳加热问题。因此,它降低了局部温度升高的风险,该温度升高可能会导致热移动和电气移民造成损害。另一方面,当局部电流密度增加时,当前人拥挤发生。它会提高局部温度,因为焦耳加热与电流的平方成正比。导体的阻力,形式,厚度和宽度对当前拥挤现象有影响。这可以通过优化互连几何形状(例如具有直线和使用圆角)来管理。因此,可能会降低潜在的当前拥挤热点和随后的电气迁移风险。comsol AC/DC模块用于研究焦耳加热和当前拥挤对互连可靠性的影响。模拟包括加成实验值的边界条件,以确保准确表示电迁移。因此可以将结果与实验数据进行比较,以确定准确性和有效性。通过在comsol中构建的3D模型构建的电流和温度分布的模拟,首先迭代得出了改进的测试结构几何形状。与标准测试布局(标准ASTM-F1259M,美国国家标准技术研究所(NIST)测试结构)相对于优化结构,当前人拥挤的影响减少了约42%。以下是聚合物厚度效应的构象。因此,使用COMSOL模拟提供了一种强大的手段来研究不同设计因素对互连可靠性的影响。通过了解从这些模拟中获得的全面知识,可以优化设计并降低互连故障的风险。关键字:电气移民,焦耳加热,当前拥挤,热度,良好的音高互连可靠性,微电体系统,组装和互连技术。
iD(in)3管od(in)3.5壳体ID(in)11壳od(in)13.8孔直径(in)13.8(in)13.8(无水泥)在2000 m(kpa)20,000 t时0 m(°C)15 t在2000 m(°c)60 m(°C)60 )60iD(in)3管od(in)3.5壳体ID(in)11壳od(in)13.8孔直径(in)13.8(in)13.8(无水泥)在2000 m(kpa)20,000 t时0 m(°C)15 t在2000 m(°c)60 m(°C)60
21. 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 67
穿过一个线圈绕组的交流电会产生磁通量,从而在相邻线圈中感应出电流。电压调节是通过改变线圈匝数来实现的。由于铁芯由钢(一种磁致伸缩材料)制成,这些磁通量(交替方向)会引起机械应变。这会因金属的快速膨胀和收缩而产生振动。这些振动通过油和固定内芯的夹紧点传递到油箱壁,产生可听见的嗡嗡声,称为铁芯噪声(见图 2,底部)。除了铁芯噪声之外,线圈中的交流电还会在各个绕组中产生洛伦兹力,从而引起振动(称为负载噪声),这会增加传输到油箱的机械能。面对这些多个噪声源以及相互关联的电磁、声学和机械因素,ABB 企业研究中心 (ABB) 的工程师