ANSYS, Inc. Applied Materials, Inc. Aqua Sciences Inc. Armanino LLP Armanino Solutions LLC Art Semi LLC ASML US LLC ATLAS COPCO COMPRESSORS LLC Atlas Copco Compressors, LLC B. Riley Securities, Inc. BJ Muirhead Company Inc. Banner Industries Bayard, PA BDO USA LLC Bergmann Associates Boywic Farms, LLC Brex, Inc. Broadridge ICS Bruker AXS, LLC Cadence Design Systems, Inc. Cain-White & Company California Dept of Tax and Fee Admin Camtek USA, Inc. Canandaigua City School District Canandaigua-Farmington Water & Sewer Districts CASPIAN IT GROUP Chain Reaction Systems, Inc. Chemical Distributors Inc Chemical Strategies, Inc Chemical Strategies, Inc. ChemTreat, Inc. Chimera Integrations LLC Cintas Corporation Clark Tu-Cuong Nguyen Cleanpart East, LLC Colorado Microcircuits, Inc. Comairco Equipment, Inc. Comsol, Inc. Controlled Contamination Services, LLC Copper Mountain Technologies, LLC 康奈尔大学 Cornerstone Research, Inc. 公司服务公司 (CSC) Corvid Cyberdefense, LLC Coverall North America Inc.
摘要:微流体混合器,一种微流体技术的关键应用,主要用于微观设备中各种样品的快速合并。鉴于其设计过程的复杂性以及设计师所需的大量专业知识,微流体混合器设计的智能自动化引起了极大的关注。本文讨论了一种将人工神经网络(ANN)与增强学习技术整合起来的方法,以使微流体混合器的尺寸参数设计自动化。在这项研究中,我们选择了两种典型的微流体混合器结构进行测试和训练的两个神经网络模型,包括高度精确且具有成本效益,作为传统,耗时的有限元模拟的替代方法,使用了多达10,000组COMSOL模拟数据。通过定义加强学习剂的有效状态评估函数,我们利用训练有素的代理成功验证了这些混合器结构的尺寸参数的自动设计。测试表明,仅在0.129 s中可以自动优化第一个混合器模型,而第二个混合器模型可以自动优化,而第二个混合器模型可以显着减少与手动设计相比的时间。模拟结果验证了在微流体混合器的自动设计中增强学习技术的潜力,并在该领域提供了新的解决方案。
摘要:CMOS光二极管已在微系统应用中广泛报道。本文使用COMSOL多物理学对P – N结光电二极管的设计和数值模拟,用于三种CMOS技术(0.18 µm,0.35 µm,0.35 µm和0.7 µm)和三个不同的P – N交界结构:N+/P-Substrate,P-Substrate,P+/N-N-Well/n-Well/n-Well/well/p-Subsulate。对于这些模拟,根据不同的技术设定了深度连接和掺杂剂浓度。然后,每个phodiode均在分光光度法上进行了分光光度法的特征,响应性和量子效率。获得的数值结果表明,当需要可见的光谱范围时,0.18和0.35 µM CMOS技术是具有效率最高峰的最高峰的技术,与0.7 µM技术相比。此外,比较了三个最常见的P – N垂直连接光电二极管结构。N+/p-Substrate Juints Photodiode似乎是可见范围内具有最高量子效率的一种,与文献一致。可以得出结论,光电二极管的特征曲线和暗电流值与文献中的报告一致。因此,这种数值方法允许预测光电二极管的性能,帮助在其微加工之前为每个必需的应用程序选择最佳的结构设计。
当前的隧道安全概念是基于常规燃料车事故的经验。未来几年的过渡将涉及使用诸如氢,天然气和电动汽车的替代燃料。中,似乎在不久的将来,中型和小型车辆将由锂离子电池(城市汽车)电动供电。带有锂离子电池(LIB)的电动汽车的主要问题在于释放速率(HRR),以及Lib Fire释放的有毒化合物。可以通过温度,电力和机械滥用来触发飞向火的热逃亡。后者通过电池管理系统(BMS)或单元架构进行管理更为复杂。在当前工作中,显示了通过指甲测试测试的LIB的初步结果。测试和建模的LIB细胞是三星INR-18650-29E。在100%的SOC达到800°C的SOC温度下测试了此类单元,最大压力值约为4 bar。测量了腔室内CO的浓度。测得的CO水平范围为3000-4000 ppm(v),与其他研究相当。Comsol上实施的模型由两个组件组成:一个1D模型,旨在通过伪两维(P2D)模型模拟电池的电化学行为,而3D模型仅模拟传热。关键字:lib; bev; hrr;有毒释放
摘要:本文深入研究了地下储氢的生物地球化学建模方法。它深入研究了地下氢的复杂动力学,重点研究了小型(孔隙实验室规模)和储层规模模型,强调了捕捉多孔介质中的微生物、地球化学和流体流动动态相互作用以准确模拟存储性能的重要性。小规模模型提供了对局部现象(例如微生物氢消耗和矿物反应)的详细见解,并且可以根据实验室数据进行验证和校准。相反,大规模模型对于评估项目的可行性和预测存储性能至关重要,但目前还不能通过实际数据来证明。这项工作解决了从精细尺度到储层模型的过渡挑战,整合了空间异质性和长期动态,同时保留了生物地球化学的复杂性。通过使用 PHREEQC、Comsol、DuMuX、Eclipse、CMG-GEM 等多种模拟工具,本研究探索了建模方法如何发展以纳入多物理过程和生化反馈回路,这对于预测氢的保留、流动和潜在风险至关重要。研究结果突出了当前建模技术的优势和局限性,并提出了一种工作流程,以充分利用现有的建模功能并开发储层模型来支持氢存储评估和管理。
摘要 - 本文提供了一种新型配置,用于在柔性电子设备上制造的无线供电和模块化植入设备。基于无线功率传递的神经植入物由接收器天线,电源管理电路和柄组成,用于传输,记录和刺激。在这里,实现的新颖性属于模块化概念,提供了两种不同的配置,有助于自定义植入物,例如用于不同的柄长度或天线设计。对于这种模块化设计,设计了两个天线,其中一个是13.56 MHz和8 MHz的另一个天线之一,这些天线经过了测试,以测量接收器侧接收到的能量,并证实了发电系统的正确性能。提供了电气和机械分析,以证明在建模环境下制造的设备的正确操作。comsol多物理用于对设备的机械行为进行建模,并在通常用于柔性植入设备的材料数据集中找到最佳材料。结果,在弯曲的工作条件下,parylene c,von mises应力为179mpa,是最合适的材料。尽管从机械的角度来看,苯乙烯C是最佳材料,但在本文中,由于其可用性和成本效益,选择了用于最终制造设备的最终制造,从而提供了足够的植入物 - 脑组织机械,生物相容性和生物整合
坎帕尼亚大学“Luigi Vanvitelli”应用数学、物理学和工程学博士学位 研究用于电信应用的近红外光电探测器,基于由氢化非晶硅、石墨烯和晶体硅(a-Si:H/Gr/c-Si)组成的混合光子结构 ❖ 开发 COMSOL Multiphysics 模拟(FEM 有限元法),用于设计集成在波导中工作在 1.55um 的光电探测器 ❖ 在 Matlab 中开发实现传输矩阵法(TMM)的数值模拟,用于设计集成在谐振腔中的光电探测器。 ❖ 洁净室中的微制造活动:石墨烯上三维材料沉积技术的研究、光电探测器的制造 ❖ 材料和器件的电气和光学特性。 ❖ 作为生物芯片项目的一部分,向那不勒斯微电子与微系统研究所 (CNR-IMM) 提供研究资助,用于高危地区人群的慢性淋巴细胞白血病的快速诊断和跟踪。主题:基于氧化锌纳米线的生物传感器的制造和电气特性。 ❖ 洁净室微制造活动:用于氧化锌纳米线生长的水热技术、热退火和热氧化工艺、金属蒸发、通过直流磁控溅射进行材料沉积。 ❖ 纳米结构生物传感器的电气特性 ❖ 使用 MATLAB 程序分析和可视化实验数据
尽管我们为智能电网建模付出了巨大努力,但迄今为止我们还没有一种方法和相关工具,能够轻松、模块化地创建各种时空尺度的精确智能电网模型,并且这些模型是可扩展的。此外,现有的测试平台无法轻松链接到设计和操作的权衡和决策工具。最后,这是整个建模、综合和性能评估环境中最薄弱的组成部分,我们没有严格的需求和指标表示,可以轻松链接到此类建模环境,以测试和验证需求和性能指标。在本文中和演示中,我们将介绍我们正在开发智能电网集成建模中心的方法和框架,这些中心可以容纳各种空间和时间尺度的异构物理和网络组件。该中心采用了我们最近开发的现代而严格的基于模型的系统工程方法,并利用 SysML 来表示智能电网的各种结构和行为组件。我们展示了这种环境如何轻松链接到 OpenModelica 和 Matlab(或 SciLab)和 COMSOL 等流行工具来建模所涉及的异构物理。我们将描述这些模型如何通过分布式混合系统分析和端口汉密尔顿形式化来支持内置可组合性。后者理论的一部分涵盖了混合
近年来,各种出版物讨论了与微通道壁上尖锐的结构结合使用超声检查以实现快速混合的可能性。用超声操作通道时,锋利的边缘会振动并产生局部声流现象,从而导致流体的混合大大增强。使用低kHz范围内的声频率,波长远大于通道宽度,因此可以假定通道段的统一致动,包括锋利的边缘。在先前的工作中,我们在Comsol多物理学的声学模块中采用了新的声学流界面,以模拟两种相同的流体与不同物种浓度的混合,并在含有锋利的锋利,均匀间隔,均匀间隔,均匀的三角形边缘的2D或3D段中的不同物种浓度。我们的建模管道结合了压力和热雾声的声学流界面与背景流和稀释物种界面的运输以模拟两个不同的物种浓度的额外的层流界面。计算网格需要在锋利的边缘上高度完善,以解决粘性边界层。使用四个研究步骤解决模型,首先解决频域中的声学,然后计算声流流的固定解,层流背景流以及浓度场。
主要碱性电池由于其低成本和安全性而被广泛用于便携式电子产品中。这些电池的消耗和处置促使其回收利用了显着的研究。减少碱性电池处置的另一种方法是通过增加其能量密度来延长其寿命。在这项工作中,通过通过多物理学建模确定最佳电极材料的最佳量,可以最大程度地提高AA主要碱电池的能量密度。在comsolMultiphysics®中开发了碱性电池的电化学模型,并用在恒定电阻载荷下获得的排放曲线(即电压与时间)进行了验证。然后对电极厚度进行优化,以最大化电池的能量密度,同时保持其外部尺寸。能量密度相对于电极孔隙率和界面区域的灵敏度。电化学模型能够复制在250 mA恒定电流放电下获得的放电曲线。通过减小锌阳极的厚度,能量密度最大化。但是,这会导致阳极在电流收集器附近溶解,并可能损害电池中的电连续性。增加阳极厚度可防止当前收集器的溶解,但在电池中增加了质量。这项研究的结果可用于开发更长的碱性电池。此外,可以通过考虑热效应或修改以帮助开发可充电碱性电池来改进该模型。