2/22/2025 3:35 PM免责声明:此报告中显示的数据不是实时数据。数据进行一次刷新,每半小时,小时,每30分钟,新显示器将在刷新发生后约5-7分钟发布。
δ2log(1 /ϵ),其中r是SOCP的等级和n,δ界限了中间溶液与锥形边界的距离,ζ是由√n的参数上限,κ是在经典IPM中出现的矩阵的上限。该算法将其输入作为任意SOCP的合适量子描述,并输出了给定问题的δ-差异ϵ-最佳解决方案的经典描述。此外,我们执行数值模拟,以确定上述参数的值,然后将SOCP求解至固定的精度ϵ。我们提供了实验证据表明,在这种情况下,我们的量子算法在最佳的经典算法上表现出多项式加速,用于解决时间O(NΩ+0。5)(在这里,ω是矩阵乘法指数,值约为2。37理论上,在实践中最多3)。对于随机SVM(支持向量机)大小O(n)的实例,量子算法量表为O(n K),其中指数k估计为2。59使用最小二乘力法。在同一家庭随机实例上,外部SOCP求解器的估计缩放指数为3。31对于最先进的SVM求解器为3。11。
Alexander Dema 1,2,3,RababA。Alexander Dema 1,2,3,RababA。
引言:规范/引力对偶背景下的一个核心问题是理解体经典几何是如何编码在边界态的纠缠结构中的,人们希望通过研究冯·诺依曼熵在这种环境下特有的性质来提取有关这种编码的有用信息。互信息一夫一妻制 (MMI) 的发现 [4,5] 表明,对于几何状态,即与经典几何对偶的全息共形场论 (CFT) 的状态,Hubeny-Rangamani-Ryu-Takayanagi 处方 [6,7] 意味着边界 CFT 中空间子系统的熵满足一般不适用于任意量子系统的约束。此后,人们发现了新的全息熵不等式,全息熵锥 (HEC) [8] 得到了广泛的研究 [9 – 20] 。随着参与方数量 N 的增加,寻找新的不等式很快变得在计算上不可行
本文介绍了威廉姆森纳米流体和普通纳米流体在旋转锥体延伸表面上流动时非稳态动力学热分布增强的数值研究。回旋微生物的生物对流和磁场热辐射通量是这项研究的重要物理方面。沿 x 和 y 方向考虑速度滑移条件。通过相似函数将主要公式转换为常微分形式。通过使用 Matlab 代码对 Runge-Kutta 程序进行数值求解,解决了五个具有非线性项的耦合方程。浮力比和生物对流瑞利数的参数降低了 x 方向的速度。与粘度成正比的滑移参数降低了流速,从而导致温度升高。此外,温度随着磁场强度、辐射热传输、布朗运动和热泳动值的升高而升高。
摘要 分析动态细胞内生物过程的一个挑战是缺乏足够快速且特异性的方法来扰乱细胞内蛋白质活动。我们之前通过在功能域之间插入蓝光控制的蛋白质二聚化模块,开发了微管加末端追踪蛋白 EB1 的光敏变体。在这里,我们描述了一种先进的方法,可以在单个基因组编辑步骤中用这种光敏变体替换内源性 EB1,从而使这种方法可以在人类诱导多能干细胞 (hiPSC) 和 hiPSC 衍生的神经元中使用。我们证明,在发育中的皮质神经元中,急性和局部光遗传学 EB1 失活会诱导生长锥周围微管解聚,随后导致神经突回缩。此外,前进的生长锥会被蓝光照射区域排斥。这些表型与神经元 EB1 同源物 EB3 无关,揭示了 EB1 介导的微管末端相互作用在神经元形态发生和神经突引导中的直接动态作用。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
本研究探讨了磁流体力学 (MHD) 和生物对流对混合纳米流体在具有不同基液的倒置旋转锥体上的流动动力学的综合影响。混合纳米流体由悬浮在不同基液中的纳米颗粒组成,由于磁场和生物对流现象之间的相互作用而表现出独特的热和流动特性。控制方程结合了 MHD 和生物对流的原理,采用数值方法推导和求解。分析考虑了磁场强度、锥体旋转速度、纳米颗粒体积分数和基液类型等关键参数对流动行为、传热和系统稳定性的影响。结果表明,MHD 显著影响混合纳米流体的速度和温度分布,而生物对流有助于增强混合和传热速率。此外,基液的选择在确定混合纳米流体系统的整体性能方面起着关键作用。这项研究为优化在 MHD 和生物对流效应突出的应用中利用混合纳米流体的系统的设计和操作提供了宝贵的见解。关键词:磁流体动力学 (MHD);生物对流;混合纳米流体;倒置旋转锥;基液;纳米粒子;流动动力学 PACS:47.65.-d、47.63.-b、47.35. Pq、83.50.-v
泡沫。传统的 PFAS 检测分析方法采用耗时的提取方法,然后进行冗长的色谱分离和质谱检测。为了克服这些问题,锥形喷雾电离 (CSI) 由折叠滤纸制成的三维锥体组成,允许将固体样品放置在空心隔间内。将溶剂应用于固体样品,在那里发生液体萃取。在锥体的尖端有一个小孔,允许 PFAS 通过,同时保留土壤。施加高电压使分析物电离,然后通过质谱仪 (MS) 进行分析。虽然传统 CSI 在分析固体方面表现出色,但由于手动锥体结构的多变性,可重复性可能是一个限制。
• 对 EML-1 隐藏区域中的物体进行天体动力学、覆盖范围和辐射测量 • 逐步部署多个站组成的网络,首先在南极站具备初始作战能力 (IOC),并具有持续太阳照射和地球 LOS 进行通信 • 使用月球勘测轨道器 (LRO) VIS、IR 和 LIDAR 地图进行选址 • 源自 Ball CT-2020 星跟踪器的宽视场 (WFOV) 摄像机 • 指向天顶的相关鱼眼摄像机以检测附近和快速移动的物体 • Ball 防尘和干式润滑技术可保护光学器件、太阳能电池板和运动部件 • 我们在 L-CiRIS 热成像摄像机中学到的月球独特的热工程经验将于 2023 年交付到月球南极 • 由 NASA 预先批准的供应商作为商业产品进行月球表面交付 • 将带电粒子、射频和其他有效载荷与摄像机组合在一起的仪器套件,共同完成任务 • 额外科学:悬浮月球尘埃、探路者用于天文观测的大型电光或红外(EOIR)月球观测站