摘要 本文首次研究了气候变化对南美洲光伏潜力的长期影响。由于太阳辐照度高,该地区在实施可再生能源(主要是太阳能解决方案)方面具有巨大潜力。基于针对南美洲地区的协调区域降尺度实验 ( CORDEX ),我们估计了气候变化到本世纪末将如何影响光伏发电潜力。证据表明,光伏发电潜力最大可能下降约 15%,最大可能增加约 7%,这主要是由于不同区域太阳辐照度的变化。此外,我们还观察到,温度升高的地区太阳辐照度水平也会升高,这在一定程度上可以补偿温度上升造成的损失。因此,大部分地区的光伏发电不会受到负面影响。
将考虑到国家政策和预算,与国际气候协议(例如,《巴黎协定》)保持一致。这包括设定减少排放目标,并专注于弱势部门的气候融资。这些努力旨在减少脆弱性,并为该国做好气候变化的不同影响,从季风改变到更频繁的极端天气事件。(b)印度气候建模研究和气候科学的量子增加。地球科学部(MOES)在浦那印度热带气象学院建立了气候变化研究中心(CCCR),以进行与气候变化科学有关的研究。CCCR首次开发了一种土著气候模型,即IITM-EARTH系统模型(IITM-ESM),该模型提供了印度季风降雨的可靠预测,并用于解决该地区的气候变异性和变化问题。该模型是印度第一个为政府间气候变化小组(IPCC)第六次评估报告(IPCC-AR6)做出贡献的模型。此外,CCCR还领导了南亚地区的协调区域缩减实验(CORDEX),用于产生高分辨率的区域气候变化投影,这些预测经常用于评估气候变化对不同部门的影响。
摘要:人类活动引起的气候变化正在改变控制全球和澳大利亚自然灾害特征的地球系统过程。对未来气候变化下的灾害进行模型预估对于有效适应气候变化至关重要。本文介绍了 BARPA-R(澳大利亚气象局大气区域预估),这是一个区域气候模型,旨在对澳大利亚地区的气候预估进行降尺度处理,以研究未来的灾害。BARPA-R 是一个有限区域模型,水平网格间距为 17 公里,利用了英国气象局统一模型 (MetUM) 大气模型和英国联合陆地环境模拟器 (JULES) 陆地表面模型。为了建立可信度并符合协调区域气候降尺度实验 (CORDEX) 的实验设计,BARPA-R 框架已用于降尺度 ERA5 再分析。本文对本次评估试验进行了评估。基于性能的评估结果以ERA5为基准,自由运行的BARPA-R模拟与受观测约束的再分析之间的性能相当,这被视为良好结果。首先,对BARPA-R对澳大利亚地表气温、降水和10米风场的表征进行检验,发现其总体性能良好,偏差包括每日最高气温1 ◦ C的冷偏差、昼夜温差减小以及澳大利亚内陆地区每月高达25毫米的湿偏差。每日最高气温的近期趋势与观测结果一致。
摘要。NARCliM2.0 (New South Wales and Australian Regional Climate Modelling) comprises two Weather Re- search and Forecasting (WRF) regional climate models (RCMs) which downscale five Coupled Model Intercompar- ison Project Phase 6 (CMIP6) global climate models con- tributing to the Coordinated Regional Downscaling Exper- iment (CORDEX) over Australasia at 20 km resolution and澳大利亚东南部以4公里的对流渗透分辨率。我们首先描述了Narclim2.0的设计,包括通过使用不同的参数为行星边界层,微物理学,Cumulus,辐射和陆地表面模型(LSM)测试78个RCMS选择两个定义RCM。然后,我们评估Narclim2.0模拟历史气候与CMIP3型Narclim1.0和CMIP5-强制Narclim1.5 RCMS的技能,并比较富度气候预测的差异。RCM使用WRF中新的Noah多参数化(NOAH-MP)LSM的 rcms,默认设置允许使用Noah Unifered进行默认设置,以模拟温度变量与RCMS进行实质性改进。 Noah- MP在模拟沉淀方面的改善较小,除了对澳大利亚东南海岸的大大改善。 激活Noah MP的动态植被覆盖率和/或径流选项主要改善了最低温度的模拟。 narclim2.0在最高温度偏差中与Narclim1.0和1.5(1.x)赋予了很大的降低,在许多上,绝对偏差为约0.5 krcms,默认设置允许使用Noah Unifered进行默认设置,以模拟温度变量与RCMS进行实质性改进。Noah- MP在模拟沉淀方面的改善较小,除了对澳大利亚东南海岸的大大改善。激活Noah MP的动态植被覆盖率和/或径流选项主要改善了最低温度的模拟。narclim2.0在最高温度偏差中与Narclim1.0和1.5(1.x)赋予了很大的降低,在许多
摘要。由于气候变化,城市的热应力预计将很大。城市的人口密度和城市热岛效应将加剧相关的健康风险。然而,影响仍然是不确定的,这是由于存在多种指标来量化环境热量以及通常对气候模型的空间分辨率而言,这是其他因素。在这里,我们根据最近在0.11°空间分辨率(〜12.5 km)的欧洲区域气候模型模拟(欧洲摩根)的最近生产的区域气候模型模拟(欧洲欧洲)的周围热量预测。0.11°欧洲欧元合奏提供了目前可从整个欧洲的气候模型预测合奏中获得的最佳空间分辨,并可以分析城市水平的极端温度和热浪的风险。我们专注于三个基于温度的热量指标 - 年度最高温度,温度超过30°C的天数和热浪幅度每日(HWMID)(HWMID),以分析欧洲与1981 - 2010年的欧洲3°C变暖的环境热量的预测,该预测基于Euro-Cordex Sepnemble的气候数据。申请表明,南欧城市将特别受到高水平的环境热量的影响,但取决于所考虑的指标,中部,东部和北欧的城市也可能会经历大量升高。夜间环境热量,基于每日最低温度进行量化,显示与白天条件相似的空间模式,在几个城市中,周围热量的预测在三个热量指标上有很大差异,表明基于单个度量的eSTES可能低估了由于热应力而导致的不良健康影响的情况。
抽象热浪(HWS)是强调社会和生态系统的高影响现象。预计在世界许多地区的气候中,其强度和频率将增加。尽管这些影响可能是广泛的,但它们可能会受到当地和区域特征(例如地形,土地覆盖和城市化)的影响。在这里,我们利用了在这些精细尺度上阐明热浪的影响所需的高分辨率建模的最新进展。此外,我们旨在了解新一代KM规模的区域气候模型(RCMS)如何调节在众所周知的气候变化热点上热浪的代码。我们分析了15个对流渗透的区域气候模型(CPRCM,〜2–4 km网格间距)模拟及其驾驶,对流参数化的区域气候模型(RCM,〜12-15 km网格间距)的驾驶,来自Cordex旗舰飞行员对对话的模拟。重点是评估实验(2000-2009)和具有一系列气候特征的三个子域。在HWS期间,通常在夏季,CPRCMS表现出比驾驶RCMS更温暖和干燥的条件。与CPRCM相比,RCMS中的热通量分配发生了变化,导致较高的最高温度,每天的峰值高达〜150 W/m 2。这是由CPRCMS中土壤水分含量降低5–25%的驱动,这又与更长的干咒长度(最高两倍)有关。确定这些差异是否代表改进是一项挑战。然而,基于点尺度的最高温度评估表明,与RCMS相比,这种CPRCMS较高/干燥的趋势可能更现实,而参考位点的约70%表明与驾驶RCMS相比增加了附加值,仅当考虑到分布右尾部时增加到95%。相反,根据平坦区域上的高尺度网格方法,发现CPRCMS轻微有害效应。当然,CPRCM会增强干燥条件,对夏季温度高估的敲门含义。这种改善的HWS物理表示是否也对未来的变化产生了影响。
气候变化对农作物和农业产量的影响是一个实际威胁,而这是一个充满挑战的问题,因为在农作物的局部规模上进行了介入的高度复杂性。对其进行评估,需要使用耦合模型气候 - 同时确定适合当地未来条件的管理和基因型的方法,以维持适应策略。我们介绍了基于区域脐带气候模型的新型集成气候适应支持建模系统的实施和使用,以及来自DSSAT平台的CERES玉米模型,并使用新的模块使用用于最佳管理和基因型识别的新模块:使用混合方法:确定性建模和-ML/ Genetic AlgorithM。它是作为罗马尼亚的区域飞行员运行的,与用户实时互动,进行农业气候预测(施肥,播种日期,土壤)并提供在气候变化预测下模拟的最佳作物管理。两个气候场景RCP4.5和RCP8.5和十二个管理场景的多模型集合模拟显示了该地区的新结果。对于实际基因型,我们发现在所有播种日期和测试的受精水平的气候情况下,预计平均降低产量的平均值下降,对初始土壤参数敏感的反应。这种反应与两个因素有关:较短的生长季节高达10%,并且在温暖的气候下施肥效率损失。对基因型的最高收获敏感性被证明是在温暖气候下分别为幼年为成熟阶段的热时间的变化。的警告指向结果显示农业收益的农业管理机会的范围狭窄,但在相反的情况下,最佳基因型范围识别的重要作用也可能在极端的几年中为气候变化提供农作物解决方案。在六个跨参数模拟的集合中识别最佳气候下的最佳基因型显示出最大产量的系统较低值,但强调了与实际气候相比,场景中中间产量值增加的基因型窗口。结果使用确定性耦合建模系统与数据驱动的建模相结合,以识别最佳适应性,包括施肥路径,这有助于缓解气候变化。
wmo的目的是其公约记录的,涵盖了与南极条约系统相关的一系列活动,包括通过世界气候研究计划2和世界天气研究计划,包括南极科学;南极观察和基础设施,通过促进全球合作的促进,在建立观测网络,标准化,快速交流气象和相关信息的网络,其中包括全球冰圈手表;和南极服务,例如,南极地区气候中心网络的启动。wmo希望重申其致力于与南极条约系统合作的承诺,例如,认识到第2号决议的价值,ATCM XXXXVII在“合作,便利和交换气象学和相关的海洋学和冰裂环境信息”上。” WMO通过世界气候研究计划(WCRP)2(WCRP)进行了世界气候和世界天气研究计划的南极科学活动,进行了几项研究和建模活动,其中南极地区的气候是一个关键方面。它的活动通常与其他组织合作进行,例如南极研究科学委员会(SCAR)。WCRP的气候和Cryosphere核心项目(CLIC)WCRP的CLIC项目,由马萨诸塞大学阿默斯特大学在美国主持的国际办公室,重点关注气候系统的Cryosphere组成部分。有了培养Cryosperic研究未来领导者的愿景,CLIC在2023年为四名早期职业研究人员提供了研究补助。Clic是全球Cryosphere Research的连接器和集成商,在冰纸质量平衡和海平面,冰架和高山冰川,海冰和永久冻土上协调研究和建模活动(通常与疤痕合作)。与南极相关的关键活动包括疤痕/IASC/CLIC冰盖质量平衡和海平面(ISMASS),SOL/CLIC/CLIC/IASC/SCARC/SCAR BioGeechemical交换过程(BEPSII)(BEPSII)和疤痕/Clic Clic Antrictic Sea Ice工艺和气候(Feacteres)。WCRP协调与条约方相关性的几种建模活动,包括南极脐带3(协调的区域降尺度实验,与瑞典气象学和水文研究所的办公室)和CMIP(CMIP(CMIP