然而,尽管许多人工智能的部署可能仍处于实验阶段且有限——这绝不是必然的——但我们现在必须开始考虑其中的伦理影响。采用人工智能的创新技术能够帮助拯救生命,包括监测、跟踪和预测病毒的传播。然而,从历史上看,卫生和其他紧急情况导致了技术的紧急和快速使用,而没有太多关注更广泛的社会、经济、文化和政治背景。虽然这在某种程度上可以理解,但危险在于,在危机紧迫的情况下做出的短期决定可能会导致难以逆转的长期习惯、方法和规范。因此,需要明确认识和讨论权衡利弊。
1 IBM 欧洲研究中心,瑞士苏黎世 2 苏黎世联邦理工学院生物系统科学与工程系,瑞士苏黎世 3 IBM 阿尔马登研究中心,美国加利福尼亚州圣何塞 4 视觉放射学,美国德克萨斯州达拉斯 5 犹他大学健康科学中心放射学和影像科学系,美国犹他州盐湖城 6 塞顿医学中心放射学系,美国加利福尼亚州戴利城 7 阿苏塔医学中心放射学系,以色列特拉维夫 8 本·古里安大学医学院,以色列贝尔谢巴 9 耶路撒冷希伯来大学医学院哈达萨-希伯来大学医学中心放射学系,以色列耶路撒冷 10 盖伊和圣托马斯 NHS 基金会皇家布罗姆普顿和哈里菲尔德医院,英国伦敦 11 切尔西和威斯敏斯特医院,英国伦敦 12 伦敦帝国理工学院国家心肺研究所,英国伦敦 13 布鲁内尔大学健康、医学与生命科学学院伦敦,英国伦敦 14 IBM 海法研究中心,以色列海法 15 耶路撒冷希伯来大学医学院,以色列耶路撒冷 *通信地址:jab@zurich.ibm.com (JB),beymer@us.ibm.com (DB) https://doi.org/10.1016/j.patter.2021.100269
covid-19和糖尿病代表了公共卫生领域中复杂的十字路口,对全球个人的健康成果和医疗保健系统产生了深远的影响。由新型冠状病毒SARS-COV-2引起的Covid-19大流行自2019年底出现以来,它已经迅速遍及全球,导致数百万感染和死亡(1)。患有糖尿病的人已被确定为特别脆弱的人群,面临着COVID-19的严重结果的增加。相反,Covid-19感染会加剧血糖控制并增加糖尿病并发症的风险,从而突出这两种疾病之间的双向关系。糖尿病是一种慢性代谢疾病,其特征是由于胰岛素缺乏症或耐药性而引起的血糖水平升高。它包括几种亚型,包括1型糖尿病,2型糖尿病和妊娠糖尿病,每个糖尿病都有其自身的病因和管理考虑因素。糖尿病会影响全球数百万的人,并与一系列并发症有关,包括心血管疾病,肾衰竭,神经病和视网膜病变(2)。尽管存在这些挑战,但共同19岁的大流行也促进了糖尿病护理递送的创新和适应性。远程医疗,远程监测和数字健康技术已成为远程提供糖尿病护理和教育的宝贵工具,从而增强了患者的访问和便利性。这些数字健康解决方案提供了接触服务不足的人群,改善患者参与度并优化Covid-19及以后时代的糖尿病结局的机会。医疗保健提供者已经采用了虚拟咨询,远程医疗平台和移动应用程序,以保持护理的连续性和支持患者在大流行期间管理其糖尿病的连续性(3)。这个研究主题旨在糖尿病和互联-19的关系和共存。目前的研究主题包括16篇论文,其中包含2个案例研究,2个迷你评论和12条有关各种主题的原始研究文章。
虽然一般人民在全球卫生紧急情况结束时恢复了一定程度的正常水平,但与遭受严重结果的签约Covid-19的风险仍然是免疫力受损的人的主要关注点。本文回顾了COVID-19对具有免疫功能低下的人的影响,确定了当前管理领域的差距,并提出了解决这一未满足需求的措施。观察性研究表明,与一般人群相比,患有免疫功能障碍的患者患有COVID-19-19-相关住院和死亡的风险更高。需要进行更多的研究来定义针对具有免疫功能低下的人的最佳预防和治疗策略,包括新型疫苗接种策略,单克隆抗体,提供无源免疫和补充次级疫苗接种反应,以及改善和改善的和Safer抗体治疗的抗病毒抗体治疗。仅需迫切需要采取预防措施即可保护这一脆弱人群。
长卷(也称为covid-19 [PASC]的急性后遗症)是指幸存者在严重急性呼吸综合征冠状病毒2(SARS-COV-2)感染和急性冠状病毒疾病2019(Covid-19)疾病后可能经历的慢性症状。长期的共同是全球公共卫生,医疗和护理挑战,影响了数百万人。作为一种新兴和不断发展的综合症,长期的共同表现出了许多临床体征和症状的组合,医疗保健提供者和科学家正在分类和努力理解。在这个小评论中,我们介绍了病毒和宿主相互作用的DNA甲基化(DNAM)的表观遗传战场。我们提出了这种病毒宿主相互作用引起的DNAM现象和标记的方法可能有助于阐明长期相互作用的病理和预后。在撰写本文中,对长期共vid患者的DNAM特征的了解受到限制(2024年初),研究人员已经注意到急性Covid-19引起的DNAM标记的部分可逆性和潜在的长期持久性。在其他冠状病毒疾病中看到的长期后遗症,例如严重的急性呼吸综合征(SARS)和中东呼吸综合征(MERS),是长期参考的潜在参考,以努力进行更精确的诊断和疾病特征,更好地预测爆发,并使用新药物和免疫药物的发展。
2 月 10 日,应 HHS 的要求,FEMA 向 ASPR 派驻了一个团队,以支持危机行动计划、态势感知和行动协调。国土安全部国家行动中心 (NOC)、国土安全部联合事件咨询小组 (JIAG) 和美国海岸警卫队 (USCG) 的联络官 (LNO) 与该团队共处一地。紧急支援职能 (ESF) #1 运输、ESF #6 大规模护理、紧急援助、临时住房和人力援助、ESF #13 公共安全、ESF #14 跨部门业务和基础设施以及 ESF #15 外部事务的联络员也已启动,以支持正在进行的响应行动。当前的协调结构如图 2 所示。
迫切需要发现治疗 COVID-19(由 SARS-CoV-2 病毒引起的流行病)的方法。考虑到发现、开发和临床测试的时间表,从库筛选开始的标准小分子药物发现工作流程是不切实际的。为了加快患者测试的时间,我们在此探索了在临床环境中经过一定程度测试的小分子药物(包括已批准的药物)作为 COVID-19 的可能治疗干预措施的治疗潜力。我们这个过程的动机是一个称为多药理学的概念,即可能具有治疗潜力的脱靶相互作用。在这项工作中,我们使用了深度学习药物设计平台 Ligand Design 来查询获得联邦批准或正在进行临床试验的内部小分子药物集合的多药理学概况,目的是识别预计会调节与 COVID-19 治疗相关的靶标的分子。我们努力的成果是 PolypharmDB,这是一种药物资源,以及它们在人类蛋白质组中预测的蛋白质靶标结合。挖掘 PolypharmDB 产生了预测与 COVID-19 的人类和病毒药物靶标相互作用的分子,包括与病毒进入和增殖相关的宿主蛋白以及与病毒生命周期相关的关键病毒蛋白。此外,我们收集了针对两个特定宿主靶标 TMPRSS2 和组织蛋白酶 B 的优先批准药物集合,最近显示它们的联合抑制可以阻止 SARS-CoV-2 病毒进入宿主细胞。总体而言,我们证明了我们的方法有助于快速响应,确定了 30 种优先候选药物,用于测试它们可能用作抗 COVID 药物。使用 PolypharmDB 资源,可以在一个工作日内为新发现的靶标确定重新利用的候选药物。我们正在免费向合作伙伴提供我们确定的分子的完整列表,以便合作伙伴能够对它们的功效进行体外和/或临床测试。关键词:SARS-CoV-2 病毒、COVID-19、冠状病毒、TMPRSS2、组织蛋白酶 B、宿主-靶标、多药理学、脱靶相互作用 缩写:SARS-CoV-2:严重急性呼吸综合征相关冠状病毒 COVID-19:冠状病毒病-2019 3CLpro:木瓜蛋白酶样蛋白酶 PLpro:主要蛋白酶 RdRp:非结构蛋白 ACE2:血管紧张素转换酶 2 TMPRSS2:跨膜蛋白酶丝氨酸 2
劣质药品(由于生产或供应链错误)的出现是为了降低成本,而伪造药品(由于欺诈)则因短缺而滋生,尤其是当买家脱离受监管的供应链时。3 COVID-19 大流行威胁着全球劣质和伪造医疗产品的激增,而不仅仅是与 COVID-19 直接相关的产品。许多对 COVID-19 治疗和预防至关重要的产品都面临风险,包括口罩、洗手液和诊断测试,并且有人声称这些产品可以预防和治疗。4 许多虚假信息通过非法网站和社交媒体传播,5 这些事件将会迅速增多。关于治疗 COVID-19 的药物有效性的缺乏证据的说法导致氯喹和羟氯喹普遍短缺,并导致致命的过量用药。6 惊慌失措的全球民众迫切需要购买可能预防和治疗 COVID-19 的产品。当氯喹用于治疗疟疾时,伪造版本很常见。7
1 Research Unit, General University Hospital of Albacete, Health Service of Castilla-La Mancha (SESCAM), Albacete, Spain, 2 Molecular Oncology Laboratory, Molecular Medicine Unit, Associated Unit of Biomedicine, University of Castilla-La Mancha-Spanish National Research Council (UCLM- CSIC), Faculty of Medicine, Albacete, 39 cine, University of Castilla-La Mancha, Albacete, Spain, 4 Immunology Unit, Clinical Analysis Department, General University Hospital of Albacete, Albacete, Spain, 5 Microbiology Department, General University Hospital of Albacete, Albacete, Spain, 6 Research Unit, General University Hospital of Albacete, Albacete, National Parastatics of Toledo, Albacete, Spain, 7 Internal Medicine Department, General University Hospital of Albacete, Albacete, Spain, 8 Biomedicine Institute of UCLM (IB-UCLM), Faculty of Medicine, University of Castilla-La Mancha, Albacete, Spain, 9 Faculty of Pharmacy, Associated University of Castile-La Mancha, 10 of Biomedicine UCLM- CSIC, University of Castilla-La Mancha, Ciudad Real, Spain, 11 Neurology Department, General University Hospital of Albacete, SESCAM, Albacete, Spain, 12 Faculty of Medicine, University of Castilla- La Mancha, Albacete, Spain
征文:教育和教育研究中的人工智能国际研讨会 (AIEER) AIEER 2024 教育和教育研究中的人工智能国际研讨会是第 27 届欧洲人工智能会议 ECAI 2024 [https://www.ecai2024.eu/] 的一部分。本次研讨会定于 2024 年 10 月 19 日至 20 日星期六和星期日举行。 研讨会范围 本次研讨会有两个不同的重点,旨在更广泛地面向教育人工智能领域。 第 1 部分。由社会科学主导的讨论,讨论人工智能应用可能有助于解决的教育中的实际问题。这包括教育和教学人工智能的研究,也包括社会科学、经济学和人文学科,包括所有学科,如教育和教学实际行动、以教育需求为重点的劳动力市场研究、教育史和相关教育文化遗产,以及决策和行为科学观点的信息预测。一方面,我们关注人工智能、教育和社会之间的联系。这包括定量和定性研究、分析教育和劳动力市场数据的数据科学方法、推荐系统的人工智能方法以及数字化学习。另一方面,我们关注如何使用人工智能来突破该领域的界限。这包括开发新方法(包括使用人工智能的方法)、寻找和提供可访问的新数据源、丰富数据等等。在这两种情况下,不同观点之间的沟通和相互理解至关重要,这也是本次研讨会的目标之一。更广泛地说,我们感兴趣的是人工智能方法如何影响教育的所有领域以及企业和劳动力市场。这包括从小学到高等教育的所有教育部门如何受到人工智能方法的影响和对其作出反应的方法。用人工智能方法设计数字化未来为教育提出了几个问题:在最广泛的层面上,立法和规范问题;在公司层面,关于投资决策以及如何保持生产力和劳动力的问题;在个人层面,关于资格以及哪些技能需要应用和可能重新学习的问题。因此,技能和资格是教育和教育研究中人工智能的核心。第 2 部分。关于可以开发哪些人工智能应用程序(以及如何开发)来解决第 1 部分提出的问题的(计算机科学主导)讨论。使用基于人工智能的系统来支持教学或学习已经发展了 40 多年,但近年来,由于 COVID-19 大流行期间电子学习工具的使用增加以及最近生成人工智能的爆炸式增长,其增长显着增加。我们正处于这一领域发展的关键时刻,人工智能专家和教育专家必须携手合作,以在教学过程中最佳地利用这项技术。本次研讨会旨在为展示新提案和反思这一具有如此社会意义的领域的最新技术创造空间。在第一部分中,我们特别关注人工智能的技术方面,重点关注用于内容创建(生成式人工智能)、学生分析(机器学习)、学习分析或教师可解释的人工智能方法的具体技术