罗克维尔,马里兰州- 2024年7月22日 - 全球全球分子诊断专业社会的分子病理学协会(AMP)今天发表了共识建议,以帮助设计和验证临床DPYD基因分型测定,促进对不同实验室的测试标准化,并改善患者护理。手稿,“ DPYD基因分型建议:美国医学遗传学与基因组学院(ACMG),美国病理学家(CPIC)的临床药物遗传学实施联盟(CPIC)的联合共识建议(ESPT),药物基因组学知识库(PharmGKB®)和药物变异财团(PharmVar),”在《分子诊断杂志》发表之前在线发布。建立了AMP临床实践委员会的药物基因组学(PGX)工作组,以定义推荐用于临床测试的药物遗传学等位基因的关键属性,以及应包含在临床PGX基因分型测定中的最低变体。新的DPYD报告是AMP PGX工作组开发的一系列建议中的最新报告,旨在帮助标准化常用基因分型测定法的临床测试。它基于对CYP3A4 / CYP3A5,TPMT / NUDT15,CYP2D6的早期临床基因分型建议,对于华法林测试,CYP2C9和CYP2C19重要的基因。可选变体的第2层列表符合至少一个但不是全部标准的列表。对于医疗保健提供者而言,重要的是要实施这些建议以及其他相关的临床准则,例如CPIC和DPWG发布的建议,这两者主要着重于解释PGX测试结果并为特定药物对的治疗建议提供治疗建议。“Testing for variants in the DPYD gene can help identify individuals who may be at increased risk for severe fluoropyrimidine-related toxicity,” said Victoria M. Pratt, PhD, Co-Chair of the AMP PGx Working Group, Director of the Scientific Affairs for Pharmacogenetics at Agena Bioscience, and Adjunct Professor of Clinical Pharmacology at Indiana University School of Medicine.“这份新报告旨在改善临床实验室的临床实践,并促进临床实验室的标准化,并确保将适当的变体包括在临床PGX DPYD分析中。”与以前的临床PGX基因分型测定建议一样,AMP PGX工作组使用了建议包含的变体的两层分类。之所以选择,是因为它们对蛋白质和/或基因表达的功能活性具有良好的特征性作用,在人群/祖先组中具有明显的次要等位基因频率,具有可用的参考材料,可用于测定验证,并且对于使用标准分子测试方法进行疑问的临床实验室在技术上是可行的。 这些有关临床基因分型测定的建议不包括对蛋白质功能或基因表达不明的变体。 它们是作为参考指南而不是限制性列表。,是因为它们对蛋白质和/或基因表达的功能活性具有良好的特征性作用,在人群/祖先组中具有明显的次要等位基因频率,具有可用的参考材料,可用于测定验证,并且对于使用标准分子测试方法进行疑问的临床实验室在技术上是可行的。这些有关临床基因分型测定的建议不包括对蛋白质功能或基因表达不明的变体。它们是作为参考指南而不是限制性列表。
药物基因组学 (PGx) 是根据患者基因定制药物治疗的实践,它有可能改善各种治疗学科的药物治疗效果。1–10 尽管如此,PGx 的临床应用在各个医疗系统中进展缓慢且不一致,这促使人们制定实施计划,将 PGx 知识转化为有效的临床干预措施。11 美国国立卫生研究院 (NIH) 资助的临床药物基因组学实施联盟 (CPIC) 已发布 28 项指南,帮助临床医生将基因结果转化为循证药物治疗建议 12,13;荷兰药物基因组学工作组 (DPWG) 和加拿大药物安全药物基因组学网络 (CPNDS) 也制定了类似的指导声明。14,15 此外,由 NIH 牵头的实践基因组学实施 (IGNITE) 网络正在进行实用的临床试验,以确定 PGx 实施策略在不同临床环境中的临床有效性。 9,16 这些资源推动了许多 PGx 实施方案的开发,尽管这些方案主要在资源丰富的学术医疗中心实施,并且在将预先 PGx 纳入常规临床工作流程方面取得的成功有限。17–31
氟吡啶胺(FLS)[5-氟尿嘧啶,卡皮替滨]用于治疗几种实体瘤。二氢吡啶定脱氢酶(DPD)是限制率的FL催化酶,其缺乏可能会导致FL给药后严重,威胁生命或致命的毒性。在二氢吡啶二酰胺脱氢酶基因(dpyd)(dpyd*2a,dpyd*13,c.2846a> t,c.1129-5923c> g)治疗之前,使用二氢嘧啶脱氢酶基因(dpyd*2a,dpyd*2a,dpyd*2a,dpyd*2a,dpyd*2a,dpyd*2a,dpyd*2a,dpyd*2a,dpyd*2a,dpyd*2a)进行测试。 (例如,EMA)。但是,该小组识别出<20%的患有严重FL相关毒性的患者。累积近期证据强调了稀有(次要等位基因频率<1%)和新型DPYD遗传变异的潜在临床价值,以识别额外的DPD缺陷患者的额外部分,具有严重的FL相关毒性风险增加。在这篇综述中,我们旨在全面地描述有关FLEAD患者中新型和稀有DPYD变体作为毒性标记的潜在临床预测作用的可用证据,并讨论基于此类标记的临床应用来调整FL治疗的挑战和机会。尽管我们必须克服临床实施的现有障碍,但与当前的目标方法相比,对DPYD序列的全面评估(包括稀有和新颖的遗传变异)的全面评估(包括稀有和新颖的遗传变异)的可用数据支持可能会显着增强对处于危险的患者的预先识别。
抑郁症是造成残疾和自杀的最大贡献者之一,全球每年约有80万自杀(1)。在十年中,抑郁症的患病率增加了25%以上(2005-2015)(2,3)。这种增加与每年耗资数十亿美元的社会经济负担有关(4)。此外,COVID-19大流行进一步增加了病例,估计全球流行率为28%(2)。药物治疗是中度至重度抑郁症的第一线治疗方法(5)。但是,患者的显着比例未能对药物做出反应(6)。多达60%的抑郁症患者对他们的初始治疗没有反应,并且通常从第一种处方药转换为其他替代药物(6,7)。随后的治疗方法,患者具有临床阳性反应的可能性大大降低(6)。在某些个体/人群中,相同的抗抑郁药可能有效,但不具体,或者可能导致其他人的不良药物反应(ADR)(8)。因此,新策略专注于个性化抗抑郁药的处方。这是在临床实践中广泛努力的一部分,以使用精确药物技术(包括精确给药)改善患者的结果(9,10)。使用个体的基因型来帮助药物选择,称为药物基因组学,是一种有前途的方法,具有改善抑郁症治疗的潜力(9-13)。在非癌症药物中,精神病药物具有最高比例的药物,并具有FDA批准的PGX信息(17)。该领域最初被称为药物遗传学,因为它涉及单个基因或相对较少的基因的组合,但是它演变成药物基因组学(PGX),以适应整个基因组中许多基因的基因,从而影响基因相互作用(13)。有许多可用的商业PGX测试面板,包括Genesight,NeuroidGenetix,CNSDOSE,Neuropharmagen和Genecept(12)。一些面板除了提供PGX测试外,还提供与精神病药物有关的临床解释和决策支持工具(14、15)。医生可以主动为患者要求PGX测试,以指导新的药物处方,或者如果治疗失败。此外,还有监管机构(美国食品和药物管理局,FDA)和研究联盟(临床药物遗传学实施联盟,CPIC)提供了针对处方的建议和准则(12、14-16)。FDA标记了38种具有PGX预防措施的精神病药物,这些药物主要由两种主要的肝酶CYP2D6和CYP2C19代谢,分别由高度多型CYP2D6和CYP2C19基因编码(18)。然而,精神病学中PGX测试的临床使用仍然很低(19),由于许多原因,包括CYP酶反应,对药物治疗方案的依从性不佳,负面生活方式的影响(例如,烟草吸烟)以及有限的先例知识(20)。许多临床试验,荟萃分析和系统评价检查了PGX引导的药物选择以治疗抑郁症的效率和安全性。例如,Han等人。(24),报道了PGX指导治疗导致了A大多数研究发现,PGX引导的抗抑郁药处方优于治疗方法(处方不考虑PGX测试结果(21 - 24)。
1. Khan A、Fahl Mar K、Faucett J 等。安慰剂反应的增强是否影响了抗抑郁药临床试验结果?数据来自美国食品药品监督管理局 1987-2013 年。世界精神病学。2017 年;16:181-92。2. Saragoussi D、Chollet J、Bineau S、Chalem Y、Milea D。抗抑郁药在重度抑郁症治疗中的转换模式:一项全科医学研究数据库 (GPRD) 研究。Int J Clin Pr。2012 年;66:1079-87。3. 美国精神病学协会。重度抑郁症患者治疗实践指南。2010 年。4. 英国国家健康与护理卓越研究所。概述 | 成人抑郁症:识别与管理 | 指导 |NICE。NICE 指导。 2018。https://www.nice.org.uk/guidance/cg90。访问日期:2020 年 1 月 20 日。5. Cleare A、Pariante CM、Young AH 等。使用抗抑郁药治疗抑郁症的循证指南:2008 年英国精神药理学协会指南的修订版。《精神药理学杂志》。2015 年;29:459-525。6. Stahl SM。《基本精神药理学:处方指南》。第 7 版。2020 年。7. 英国国家健康与护理卓越研究所。抑郁症。成人抑郁症的治疗和管理。2009 年。8. Relling MV、Klein TE。CPIC:药物基因组学研究网络的临床药理遗传学实施联盟。临床药理学与治疗。 2011;89:464-7。9. Whirl-Carrillo M、McDonagh EM、Hebert JM 等。个性化医疗的药物基因组学知识。临床药理学与治疗学。2012;92:414-7。10. Thorn CF、Klein TE、Altman RB。PharmGKB:药物基因组学知识库。方法分子生物学。2013;1015:311-20。11. FDA 批准的药物。FDA/CDER 资源页面;美国食品药品监督管理局网站。2020 年。https://www.fda.gov/drugs。访问日期:2021 年 10 月 20 日。12. 欧洲药品管理局。网站。2020 年。https:/ema.europa.eu/en。访问日期:2021 年 10 月 20 日。13. Qaseem A、Barry MJ、Kansagara D 等。重度抑郁症成年患者的非药物治疗与药物治疗:美国内科医师学会临床实践指南。《实习医生年鉴》。2016;164:350-359。14. Taliaz D、Spinrad A、Barzilay R 等。使用机器学习和整合的遗传、临床和人口统计数据优化对抗抑郁药物反应的预测。《精神病学翻译》。2021;11:381。15. Rush AJ、Fava M、Wisniewski SR 等。缓解抑郁症的序列治疗替代方案 (STAR*D):基本原理和设计。《临床对照试验》。2004;25:119-142。 16. Fava M、Rush AJ、Trivedi MH 等。缓解抑郁症的序列治疗替代方案 (STAR*D) 研究的背景和原理。《北美精神病学与临床》2003;26:457-94。17. Mrazek DA、Biernacka JM、McAlpine DE 等。抑郁症的治疗结果:药物基因组学研究网络抗抑郁药物药物基因组学研究。《临床精神药理学杂志》2014 年 6 月;34(3):313-7。18. Bertrand Saudreau、Amit Spinrad、Redwan Maatoug 等。个性化抗抑郁药处方对重度抑郁症患者基于遗传学、社会人口统计学和临床数据的影响:一项临床试点研究。药理学和药物基因组学 2022;4(1): 122-129。doi: 10.31488/jpp.105。