课程资格:一如既往,只有提供当前背景调查的人(以隐藏武器许可证,MIL/LE代理商的凭据,警察背景调查等形式被允许参加。目前的执法,军事和矫正等个人被偏爱,因为他们积极需要培训来保护自己和我们。我们欢迎那些没有事先“战术射击”课程的人,但他们必须对范围安全有很大的掌握。安全性至关重要,将深入覆盖并每天重新覆盖。所有的射击演习都将开始基本,并在学生证明安全完成它们的能力时朝着更复杂的方向发展。
与许多候选光感应材料相比,INSB在III-V家族的胶体量子点(CQD)半导体中有望进入更广泛的红外波长。但是,实现必要的尺寸,尺寸差异和光学特性一直具有挑战性。在这里研究了与INSB CQD相关的合成挑战,发现不受控制的锑前体的减少会阻碍CQD的受控生长。为了克服这一点,开发了一种将非流传性前体与锌卤化物添加剂相结合的合成策略。实验和计算研究表明,锌卤化物添加剂减速了锑前体的还原,从而促进了更均匀尺寸的CQD的生长。还发现,卤化物的选择提供了对这种效果强度的额外控制。所得的CQD在光谱范围为1.26–0.98 eV的光谱范围内表现出良好的激发型转变,以及强发光。通过实施结合后配体交换,可以实现胶体稳定的墨水,从而实现了能够制造高质量CQD纤维的胶水。在1200 nm处提出了INSB CQD光电遗传学的第一个演示,在1200 nm处达到75%的外部量子效率(QE),这是最高的短波红外线(SWIR)QE在重型无金属质红外CQD基于CQD基于CQD的基于CQD的设备中所报道的。
在 III-V 族胶体量子点 (CQD) 半导体中,与许多光敏材料候选物相比,InSb 有望获得更广泛的红外波长范围。然而,实现必要的尺寸、尺寸分散性和光学特性一直具有挑战性。本文研究了与 InSb CQD 相关的合成挑战,发现锑前体的不受控制的还原会阻碍 CQD 的控制生长。为了克服这个问题,开发了一种将非自燃前体与卤化锌添加剂相结合的合成策略。实验和计算研究表明,卤化锌添加剂会减缓锑前体的还原,从而促进尺寸更均匀的 CQD 的生长。还发现卤化物的选择可以额外控制这种效应的强度。所得 CQD 在 1.26-0.98 eV 的光谱范围内表现出明确的激子跃迁,同时具有强光致发光。通过实施合成后配体交换,实现了胶体稳定油墨,从而能够制造高质量的 CQD 薄膜。首次演示了 InSb CQD 光电探测器,在 1200 nm 处达到 75% 的外部量子效率 (QE),据了解,这是无重金属红外 CQD 设备中报告的最高短波红外 (SWIR) QE。
胶体量子点 (CQDs) 因其可调带隙和溶液处理特性,是用于红外 (IR) 光检测的有前途的材料;然而,到目前为止,CQD IR 光电二极管的时间响应不如 Si 和 InGaAs。据推测,II-VI CQD 的高介电常数会导致由于屏蔽和电容而导致的电荷提取速度变慢,而 III-V 族(如果可以掌握其表面化学性质)则可提供低介电常数,从而增加高速操作的潜力。在初步研究中发现,砷化铟 (InAs) 中的共价特性会导致不平衡的电荷传输,这是未钝化表面和不受控制的重掺杂的结果。报道了使用两性配体配位进行表面管理,并且发现该方法同时解决了 In 和 As 表面悬空键。与 PbS CQD 相比,新型 InAs CQD 固体兼具高迁移率(0.04 cm 2 V − 1 s − 1),介电常数降低了 4 倍。由此产生的光电二极管实现了快于 2 ns 的响应时间——这是之前报道的 CQD 光电二极管中最快的光电二极管——并且在 940 nm 处具有 30% 的外部量子效率 (EQE)。
III-V 族胶体量子点 (CQDs) 是用于光电应用的有前途的材料,因为它们避免了重金属,同时实现了从可见光到红外 (IR) 的吸收。然而,III-V CQDs 的共价性质要求开发新的钝化策略来制造用于光电器件的导电 CQD 固体:这项工作表明,先前在 II-VI 和 IV-VI 量子点中开发的使用单个配体的配体交换不能完全钝化 CQD,并且这会降低设备效率。在密度泛函理论 (DFT) 模拟的指导下,这项工作开发了一种共钝化策略来制造砷化铟 CQD 光电探测器,该方法采用 X 型甲基乙酸铵 (MaAc) 和 Z 型配体 InBr 3 的组合。这种方法可保持电荷载流子迁移率并改善钝化效果,斯托克斯位移减少 25%,第一激子吸收线宽随时间推移的增宽率降低四倍,并使光致发光 (PL) 寿命增加一倍。所得器件在 950 nm 处显示 37% 的外部量子效率 (EQE),这是 InAs CQD 光电探测器报告的最高值。
摘要:在这封信中,随机激光是通过覆盖聚甲基丙烯酸甲酯(PMMA)掺杂的CDSE/ZNS胶体量子点(CQDS)构建的活性波导结构来制造的。由于CQD的光致发光光谱以及Active波导层提供的强限制机制,因此具有较低的阈值,因为Ag Nanoislands的等离子共振出色的重叠。随机激光的性能可以通过AG纳米兰州结构的灵活制造来调节。由于CDSE/ZNS CQD的超级化学和照片稳定性以及PMMA矩阵提供的CDSE/ZNS CQD的稳定外部环境,光谱演化显示在不间断激光照射下随机激光的稳定性。
在作为胶体量子点(CQD)产生的材料中,HGTE具有特殊的状态,是覆盖从可见光到THZ的整个红外范围的唯一材料(0.7-100μm)。这种独特的特性是由其电子结构产生的,结合了空气稳定性和电荷传导能力,在过去的二十年中产生了一致且庞大的效果,以产生和改善HGTE CQD。同时,HGTE CQD与中波红外的任何其他胶体替代品更先进,内容涉及其整合到高级光子和光电应用中。在这里,HGTE CQD相对于材料的生长,电子结构建模,其整合到光子结构中的最新发展及其作为从单个元素设备向复杂传感器和红外成像器的活动材料传递的传递。最后,还包括有关该材料对行业的潜力的讨论,还包括相对于材料和设备设计,在低技术准备水平的经济和生产方面增加了新的挑战。
Quantum Walk的独特功能,例如Walker叠加位置空间并与位置空间纠缠的可能性,提供了固有的优势,可以捕获以设计高安全的量子通信协议。在这里,我们提出了两个Quantum Direct通信协议,一个量子安全的直接通信(QSDC)协议和一个受控的量子对话(CQD)协议(CQD)协议,使用离散时间量子步行在周期中。所提出的协议无条件地抵抗各种攻击,例如拦截攻击,拒绝服务攻击和中间人攻击。此外,与基于基于QUBIT的LM05/DL04协议相比,提出的CQD协议与不信任的服务提供商无条件安全地安全,并且这两个协议都更加安全。
III-V 胶体量子点 (CQD) 在红外光电探测中备受关注,CQD 合成和表面工程的最新发展提高了性能。本文研究了光电探测器的稳定性,发现锌离子从电荷传输层 (CTL) 扩散到 CQD 活性层会增加其中的陷阱密度,导致操作过程中性能快速且不可逆地下降。为了防止这种情况发生,本文在 CQD 和 ZnO 层之间引入了有机阻挡层;但这会对设备性能产生负面影响。然后,该设备允许使用 C60:BCP 作为顶部电子传输层 (ETL) 以获得良好的形态和工艺兼容性,并选择 NiO X 作为底部空穴传输层 (HTL)。第一轮基于 NiO X 的设备表现出高效的光响应,但由于针孔而存在高漏电流和低开路电压 (Voc)。本研究将聚[双(4-苯基)(2,4,6-三甲基苯基)胺] (PTAA) 与 NiO X NC 结合形成混合 HTL,这种添加可减少针孔形成、界面陷阱密度和双分子复合,从而增强载流子收集。光电探测器在施加 1 V 偏压时在 970 nm 处实现 53% 的外部量子效率 (EQE),并且在连续照明操作 19 小时后仍保持 95% 的初始性能。光电探测器在货架储存 80 天后仍保持 80% 以上的性能。
摘要 量子行走的独特特征,例如行走者可以处于位置空间的叠加中并与位置空间纠缠,提供了固有的优势,可以利用这些优势来设计高度安全的量子通信协议。这里,我们提出了两种量子直接通信协议,一种量子安全直接通信协议和一种使用周期离散时间量子行走的受控量子对话 (CQD) 协议。所提出的协议对于各种攻击(例如拦截重发攻击、拒绝服务攻击和中间人攻击)是无条件安全的。此外,与基于量子位的 LM05/DL04 协议相比,所提出的 CQD 协议被证明可以无条件地抵御不受信任的服务提供商,并且这两种协议都对拦截重发攻击更安全。