摘要 - 我们已经开发了一种使用基于二氧化硅的分子印记聚合物(MIP)在卷心菜蓝色发射碳碳量子点(CQD)上涂覆并在光学上沉积的比率荧光传感器,用于检测多巴胺(DA)。物理化学表征确定了MIP和CQD的成功集成,该集成创建了用于监测的选择性有损模式共振(LMR)。优化了实验因子以获得最大响应,并且传感探针的动态响应范围为0.3至100 µm,检测极限为0.027 µm。该策略已成功地用于检测红酒,咖啡,苹果,橙子和宽豆汁样品中的DA,对其他潜在干扰物种(例如,肾上腺素,抗坏血酸,尿酸)具有可忽略不计的交叉反应性。这种新型的基于旋转的基于旋转的传感器具有对环境和生物样品的现场,便携式和现场感测的潜在潜力和多功能性。
纳米材料和生物结构的消化杂志卷。19,编号1,1月至2024年3月,第1页。 319-324超热路线D. Ochoa合成的碳量子点的光致发光特性的影响,J。GuzmánTorres,E。M。M. Cervantes,J。L。Cavazos,I。Gómez,I。Gómez * Nuevo Leon,Nuevo Leon,Nuevo Leon,Nuevo Leon,Chement of Chemical Sciencess clabience overation overation overation overation overals overals overals ov。大学,C.P。 66455 San Nicolas de Los Garza,N.L。 墨西哥由于其化学和物理特性,该研究的重点是通过水热途径合成的超声处理对碳量子点的影响,并作为墨西哥米歇尔的酸味柠檬汁的前体。 在1、2和3小时的时间内用超声波电极进行剥离,以提供有关其对光致发光效果的解释,发现随着时间的时间,1小时的时间,PL发射改善了261 A.U. A.U. 至448 A.U. 进行了其他特征,以确认在PL中获得的结果,在PL中获得的平均粒径是通过SEM分析的,观察到范围为5至11 nm的粒径,平均尺寸为7.5 nm,并确认碳质材料,进行UV-VIS,进行UV-VIS,显示出在340 nm附近的分辨率吸收型UV吸收带。 (收到2023年11月14日; 2024年2月26日)关键字:碳量子点,水热合成,超声处理,光致发光1。 这些特征很有吸引力,并导致它们在需要最小风险的应用中使用,使CQD良好用于生物成像[7],光子设备[8],太阳能电池[9]和光电传感器[10]。大学,C.P。66455 San Nicolas de Los Garza,N.L。 墨西哥由于其化学和物理特性,该研究的重点是通过水热途径合成的超声处理对碳量子点的影响,并作为墨西哥米歇尔的酸味柠檬汁的前体。 在1、2和3小时的时间内用超声波电极进行剥离,以提供有关其对光致发光效果的解释,发现随着时间的时间,1小时的时间,PL发射改善了261 A.U. A.U. 至448 A.U. 进行了其他特征,以确认在PL中获得的结果,在PL中获得的平均粒径是通过SEM分析的,观察到范围为5至11 nm的粒径,平均尺寸为7.5 nm,并确认碳质材料,进行UV-VIS,进行UV-VIS,显示出在340 nm附近的分辨率吸收型UV吸收带。 (收到2023年11月14日; 2024年2月26日)关键字:碳量子点,水热合成,超声处理,光致发光1。 这些特征很有吸引力,并导致它们在需要最小风险的应用中使用,使CQD良好用于生物成像[7],光子设备[8],太阳能电池[9]和光电传感器[10]。66455 San Nicolas de Los Garza,N.L。墨西哥由于其化学和物理特性,该研究的重点是通过水热途径合成的超声处理对碳量子点的影响,并作为墨西哥米歇尔的酸味柠檬汁的前体。在1、2和3小时的时间内用超声波电极进行剥离,以提供有关其对光致发光效果的解释,发现随着时间的时间,1小时的时间,PL发射改善了261 A.U. A.U.至448 A.U. 进行了其他特征,以确认在PL中获得的结果,在PL中获得的平均粒径是通过SEM分析的,观察到范围为5至11 nm的粒径,平均尺寸为7.5 nm,并确认碳质材料,进行UV-VIS,进行UV-VIS,显示出在340 nm附近的分辨率吸收型UV吸收带。 (收到2023年11月14日; 2024年2月26日)关键字:碳量子点,水热合成,超声处理,光致发光1。 这些特征很有吸引力,并导致它们在需要最小风险的应用中使用,使CQD良好用于生物成像[7],光子设备[8],太阳能电池[9]和光电传感器[10]。至448 A.U.进行了其他特征,以确认在PL中获得的结果,在PL中获得的平均粒径是通过SEM分析的,观察到范围为5至11 nm的粒径,平均尺寸为7.5 nm,并确认碳质材料,进行UV-VIS,进行UV-VIS,显示出在340 nm附近的分辨率吸收型UV吸收带。(收到2023年11月14日; 2024年2月26日)关键字:碳量子点,水热合成,超声处理,光致发光1。这些特征很有吸引力,并导致它们在需要最小风险的应用中使用,使CQD良好用于生物成像[7],光子设备[8],太阳能电池[9]和光电传感器[10]。Introduction Materials derived from carbon are interesting materials and are currently receiving special attention due to the applications that can be accessed, one of the materials derived from these, are carbon quantum dots (CQD) [1], they are materials that have average sizes of 10 nm[2], due to this they have exceptional structural and electronic properties such as water solubility, photoluminescence, low toxicity, biocompatibility [2], [3], [4],[5],[6]。CQD的光学特性非常有利,这有助于通过光致发光[11],[12],[13]来检测污染物,病毒等的传感器使用,因此本研究的重点是该特征,这项功能主要由合成方法提供,主要是我们对综合方法进行了综合效果,并构成了整体的友好,并且是对环境的良好友好的友好,并且是在综合友好的范围内,并且是对环境的友好效果,并且是对环境的特征,并且是综述的。水热过程是获得量子点最常用的途径之一,因为这是一种使用低温的方法,相对较短,并且获得了颗粒的良好光致发光发射[1],[3],[14],[15]。为了改善该财产,已经有报道证明,通过使用超声处理,可以获得更好的PL排放。这是由于Sonotrode与材料在水性培养基中的接触,其作用是将大颗粒碎裂至小,因此由于机械振动而引起的更多分散颗粒,这将导致颗粒接近电磁频谱中的蓝色发射[7] [16],[17],[17],[16],[17]。在CQD合成后的这项工作中,我们研究了1、2和3小时内使用Sonotrode对CQD颗粒的效果,从而评估了它们通过光致发光光谱仪(PL),傅立叶转换基础光谱光谱(FTIR)和传输的粒径和光致发光发射(flassional sirtron Microspopicy和Electron Electron(flassital)。
摘要。纳米结构和量子点对增强光伏能量转化效率具有重大影响,这在这项综合研究中证明了这一点。纳米结构和纳米化颗粒的材料通常用于解决与能量转化有关的紧急问题。使用纳米结构物质来解决能源和自然资源的问题,最近引起了很多兴趣。方向性纳米结构特别显示了能量转换,收集和存储的希望。由于其独特的特性,例如电导率,机械能和光致发光,由碳(CQD)制成的量子点和石墨烯量子点(GQDS)已集成到混合光伏电动机 - 心电图 - 心电图系统(PV-TE)中。它评估了纳米结构对太阳能技术的影响,特别是它们如何改善太阳能电池中的功率转化和光吸收。光学探测器将光子能量转化为电信的信号,是CQD引起注意的许多光电使用,因为它们是当代成像和通信系统的重要组成部分,例如可见光照明摄像头,机器视觉,机器视觉,X射线X射线和近交易的图像处理以及可见光的光检测设备。除了超级电容器外,该研究还研究了纳米结构如何通过作为氢合成和超级电容器的光催化剂来促进可持续解决全球能源危机的关键作用。
III-V胶体量子点(CQD)在红外光检测中引起了人们的关注,CQDS合成和表面工程的最新发展提高了性能。在这里,这项工作调查了光电探测器的稳定性,发现从电荷传输层(CTL)到CQDS活性层的锌离子的差异会增加其中的陷阱密度,从而导致操作过程中快速且不可逆转的性能损失。在防止这种情况下,这项工作引入了CQD和ZnO层之间的有机阻塞层。但是这些对设备性能产生了负面影响。然后,该设备可以使用C60:BCP作为顶部电子传输层(ETL),以实现良好的形态和过程兼容性,并选择NiO X作为底部孔传输层(HTL)。基于Nio X的第一轮设备显示出有效的光响应,但由于针孔引起的高泄漏电流和低敞开电路(VOC)。这项工作介绍了Poly [Bis(4-苯基)(2,4,6-三甲基苯基)胺](PTAA)(PTAA),它使用Nio X NC形成杂种HTL,这是一种减少针孔形成,界面陷阱密度,界面陷阱密度和双肌发射重组,增强载体,增强的载体。在1 V施加偏置的970 nm处,光电探测器在970 nm处实现53%的外部量子效率(EQE),并且在连续照明操作的19小时后,它们保持了95%的初始性能的95%。光电电视机在80天的架子存储后保留了80%以上的性能。
表1:在所有调查的CQD中,计算的CBM和VBM电荷密度(%)作为在球体内部的正方形的积分(与NC的同心)中的正方形的积分,半径为50%至90%的NC Radius R范围为NC Radius R R(无论是Cation-还是Anion-rich-Rich)。为例,在半径为14°A的INP NC中(富含磅的表面)42%的CBM,并且只有7.9%的VBM位于半径为8.4°A的球体中(即60%R)。因此,我们得出的结论是,该点中的大多数VBM电荷密度都包含在其外部,即在内半径= 8.4°A和外半径= r的球形壳中。