在交互式触觉系统中,“表面”既是触摸的支持,也是图像的支持。虽然触摸表面的厚度、形状和硬度已逐渐发生改变,但其交互方式仍然像第一批设备一样,仅限于用手指以简单的手势接触屏幕,假装操纵显示的内容。触觉,即使对于集成到航空或汽车等关键系统中的触觉设备,仍然基本上作为视觉的延伸,用于指向和控制。虽然感知现象学、生态感知和有形与具身交互的理论都承认身体、运动技能和与环境的交互在感知现象中的重要性,但继续将视觉视为触觉交互的首要感觉似乎有些简单化。
所以我们关闭了“直到没有进一步的情况”; d到cas ual vi Sitors(由FIN的支持)所以我们关闭了“直到没有进一步的情况”; d到cas ual vi Sitors(由FIN的支持)
稀有变异难以检测是传统全基因组关联研究 (GWAS) 面临的问题之一。这一问题与单倍型等由多个等位基因组成的复杂基因组成密切相关。为解决这一问题,已提出了多种单核苷酸多态性 (SNP) 集方法。但这些方法很少与单倍型相关讨论。在本研究中,我们开发了一种新的 SNP 集方法“RAINBOW”,并将该方法应用于基于单倍型的 GWAS,将单倍型块视为 SNP 集。结合单倍型块估计和 SNP 集 GWAS,可在无需先前单倍型信息的情况下进行基于单倍型的 GWAS。我们准备了 100 组稻 (Oryza sativa subsp.) 的模拟表型数据和真实标记基因型数据集。 indica,并对数据集进行 GWAS。我们比较了我们的方法、传统的单 SNP GWAS、传统的基于单倍型的 GWAS 以及传统的 SNP 集 GWAS 的功效。结果显示我们的方法在三个方面优于这些方法:(1)控制假阳性;(2)如果数据集中对因果变异进行了基因分型,则可以不依赖连锁不平衡来检测因果变异;(3)它显示出比其他方法更高的功效,即它能够检测到其他方法未能检测到的因果变异,主要是当因果变异位置非常接近且其作用方向相反时。通过在本研究中使用 SNP 集方法,我们期望不仅可以检测出罕见变异,还可以检测出具有复杂机制的基因,例如具有多个因果变异的基因。 RAINBOW 是作为名为“RAINBOWR”的 R 包实现的,可从 CRAN(https://cran.r-project.org/web/packages/RAINBOWR/index.html)和 GitHub(https://github.com/KosukeHamazaki/RAINBOWR)获取。
洛林大学,法国克兰。电子邮件:phuc.do@univ-lorraine.fr在4.0行业中,采用系统监控技术提供了有关系统健康状况的大量数据,这引发了采用基于条件的维护(CBM)的挑战。 由于其能力基于其嵌入式状况监测设备实时采用系统,这可以帮助降低O&M成本并提高系统可用性,因此CBM已成为行业竞争力的一种相关方法。 但是,要利用大量数据在维护决策中的优势,要考虑的一个重要问题是国家和行动的巨大空间,这很难应对传统的维护模型。 为了克服这个问题,将机器学习和人工智能的新兴工具整合到维护决策和优化中似乎是有希望的。 因此,这项工作提出了对钢生产线的基于深入的加固学习(DRL)的维护优化,其中维护决策是根据有关系统状况的实时数据做出的。 研究的生产线使用金属废料作为钢材制造的原材料。 在使用之前,需要将废料粉碎在切碎机器中,这是最关键的过程。 当机器关闭以进行维护操作时,使用中间的缓冲区来继续为其余站提供碎屑。 建立了模拟模型,以模拟生产线的动态。 关键字:深钢筋学习,维护,钢生产线,模拟模型电子邮件:phuc.do@univ-lorraine.fr在4.0行业中,采用系统监控技术提供了有关系统健康状况的大量数据,这引发了采用基于条件的维护(CBM)的挑战。由于其能力基于其嵌入式状况监测设备实时采用系统,这可以帮助降低O&M成本并提高系统可用性,因此CBM已成为行业竞争力的一种相关方法。但是,要利用大量数据在维护决策中的优势,要考虑的一个重要问题是国家和行动的巨大空间,这很难应对传统的维护模型。为了克服这个问题,将机器学习和人工智能的新兴工具整合到维护决策和优化中似乎是有希望的。因此,这项工作提出了对钢生产线的基于深入的加固学习(DRL)的维护优化,其中维护决策是根据有关系统状况的实时数据做出的。研究的生产线使用金属废料作为钢材制造的原材料。在使用之前,需要将废料粉碎在切碎机器中,这是最关键的过程。当机器关闭以进行维护操作时,使用中间的缓冲区来继续为其余站提供碎屑。建立了模拟模型,以模拟生产线的动态。关键字:深钢筋学习,维护,钢生产线,模拟模型然后建立一个DRL框架,以通过与环境的交互进行学习,以找到最低维护成本的最佳维护政策。进行了数值案例研究,以评估所提出的DRL维护方法与常规维护策略相比。结果,提出的DRL方法在成本以及系统可用性的增加方面显示出更好的结果。
凭借基于移动应用程序和 NFC 非接触式技术的三项不同举措,Casino 集团正在为其分销网络铺平道路,以实现互联商店和订购墙,从而实现个性化的购物之旅,实现更顺畅、更移动的购物。首先,将在巴黎第16区设立一个销售点,作为品牌的“数字实验室”。在这家超市,顾客可以使用他们的智能手机注册所有商品,就像大型零售商已经使用的扫描仪一样,然后使用移动支付解决方案付款。该法国集团将同时在首都和里昂部署真实的联网海报,并在公共交通枢纽等繁忙区域展示。通过这些海报,消费者可以扫描自己所需产品的图像,然后可以在商店中领取或者要求送货上门。这面交互式数字墙相当于一个电子商务网站,但采用巨型触摸屏的形式,可从公共空间访问,这将是该分销商的第三次全面实验。mCasino 移动应用程序既可以在巴黎销售点使用,也可以在该品牌未来的订购墙上使用。
凭借基于移动应用程序和 NFC 非接触式技术的 3 项不同举措,Casino 集团正在为其分销网络铺平道路,打造互联商店和控制墙,让客户的购物之旅更加流畅、更加移动。首先,位于巴黎第16区的1个销售点将作为该品牌的“数字实验室”。在这家超市中,顾客将能够使用智能手机登记所有商品,就像大型零售商已经使用的扫描仪一样,然后使用移动支付解决方案进行支付。这家法国集团将同时在首都和里昂部署真正互联的海报,展示在公共交通枢纽等过境区域。消费者将从这些海报中扫描他们需要的产品的图像,并可以在商店取货或送货上门。互动数字墙相当于一个电子商务网站,但采用巨型触摸屏的形式,可从公共空间访问,这将是该分销商的第三次全面实验。mCasino 移动应用程序可在巴黎销售点和该品牌未来的控制墙上使用。
B. Perry 先生(主席)IFA 技术委员会主席 A. McClymont 先生(副主席)IFA 欧洲副总裁/技术委员会副主席 B. H. Al-Shayji 先生科威特航空公司技术规划专家 A. Anderson 先生史密斯航空航天公司技术与业务收购总监 R. G. Beebe 先生加拿大交通部民航地区总监 M. Buzzard 先生英国航空公司首席航空电子工程师 D. Cheney 先生美国联邦航空局 R. G. Cherry 先生 R G W Cherry Associates 董事总经理 N. Creveul 先生君主飞机工程公司工程总监 R. A. Davis 先生 IFA 前任主席 C. Edwards 先生壳牌飞机有限公司航空安全高级顾问 F. C. Fickeisen 先生波音商用飞机集团顾问 J. Gibbons 先生荷兰皇家航空公司工程部主管工程 Mr P. Harper JAA 副首席执行官 Mr P. Hattie SIFCO Turbine Components Ltd 质量保证经理 Mr S. Hills 新西兰航空工程服务部质量保证经理 Mr R. A. Holliday 英国空客英国产品完整性主管 Mr P. Hosey 顾问 Mr F. M Jauregui IFA 美洲区副总裁 Mr T. G. Johansen 波音商用飞机集团技术总监 Mr I. Lachlan 阿联酋航空质量保证总经理 Mr J. McKenna 英国民航局首席测量师 Mr F. Price 联邦快递航空服务国际有限公司董事总经理 Mr J. M. Rainbow OBE IFA 受托人主席 Mr S. Schofifield 英国中部航空公司工程总监 Mr L. Sisk FLS Aerospace (IRL) Ltd 技术总监 Mr M. A. Thompson Ai 课程总监
几年前,当我加入航空学院时,我收到了一套破旧的讲义,并被邀请为研究生讲授飞机稳定性和控制。仔细检查这些笔记,可以发现它们可以追溯到 W.J. Duncan 的工作,这也许并不奇怪,因为 Duncan 是 50 年前克兰菲尔德的第一位空气动力学教授。这无疑是一种荣幸,一开始,能够有机会追随这样一位杰出学者的脚步,我感到非常畏惧。从那个卑微的开始,我对这个主题的理解不断发展,直到现在,这为本书奠定了基础。飞机稳定性和控制的经典线性理论是永恒的,它相对简单,非常出色,并且在空气动力学家的领域中根深蒂固。那么有什么新东西呢?简而言之,没有什么新东西。然而,如今,该材料的使用和应用方式发生了很大变化,这主要是由于数字计算机的出现。计算机被用作分析和设计的主要工具,也是所有先进技术飞机所依赖的现代飞行控制系统的重要组成部分。特别是后者的发展已经并将继续对现在使用主题材料的方式产生重大影响。它不再可能
几年前,当我加入航空学院时,我收到了一套破旧的讲义,并被邀请为研究生讲授飞机稳定性和控制。检查这些笔记可以发现,它们的根源可以追溯到 W.J. 的工作。Duncan,这也许并不奇怪,因为 Duncan 是 50 年前克兰菲尔德的第一位空气动力学教授。毫无疑问,这是一种荣幸,一开始,能够有机会追随这样一位杰出学者的脚步,这让我感到非常畏惧。从那个卑微的开始,我对这个主题的理解不断发展到现在的形式,为本书奠定了基础。飞机稳定性和控制的经典线性理论是永恒的,它相对简单,非常出色,并且在空气动力学领域中根深蒂固。那么有什么新东西呢?简短的回答是:没有太多。然而,今天,这些材料的使用和应用方式已经发生了很大变化,这主要是由于数字计算机的出现。计算机是分析和设计的主要工具,也是所有先进技术飞机所依赖的现代飞行控制系统的重要组成部分。尤其是后者的发展已经并将继续对现在使用主题材料的方式产生重大影响。仅通过空气动力学设计来调整先进技术飞机的稳定性和控制特性已无法保证良好的飞行和操纵品质。飞行控制系统现在通过以有益的方式增强机身的稳定性和控制特性,在确定飞机的飞行和操纵品质方面发挥着同样重要的作用。因此,该主题必须不断发展,以促进与飞行控制的整合,而今天,综合主题的范围更加广泛,更经常被称为飞行动力学。本书中材料的处理反映了我多年来使用、应用和教授它的个人经验。我的成长经历是作为航空电子行业的系统工程师获得的,当时的重点是飞行控制系统的设计。然而,这种材料至关重要的空气动力学起源仍然清晰可见,对此我不能居功。近年来,除了教授该学科的正式课程外,我还很荣幸花了很多时间在航空学院的机载实验室飞机上教授经典材料。这段经历使我能够将材料从邓肯在航空学院成立初期引入的经典处理方法发展到目前的处理方法,这种处理方法偏向于现代系统应用。现代飞行动力学往往关注更广泛的飞行和操纵品质问题,而不是传统的、更有限的稳定性问题
几年前,当我加入航空学院时,我收到了一套破旧的讲义,并被邀请为研究生讲授飞机稳定性和控制。仔细检查这些笔记,可以发现它们可以追溯到 W.J. Duncan 的工作,这也许并不奇怪,因为 Duncan 是 50 年前克兰菲尔德的第一位空气动力学教授。这无疑是一种荣幸,一开始,能够有机会追随这样一位杰出学者的脚步,我感到非常畏惧。从那个卑微的开始,我对这个主题的理解不断发展,直到现在,这为本书奠定了基础。飞机稳定性和控制的经典线性理论是永恒的,它相对简单,非常出色,并且在空气动力学家的领域中根深蒂固。那么有什么新东西呢?简而言之,没有什么新东西。然而,如今,该材料的使用和应用方式发生了很大变化,这主要是由于数字计算机的出现。计算机被用作分析和设计的主要工具,也是所有先进技术飞机所依赖的现代飞行控制系统的重要组成部分。特别是后者的发展已经并将继续对现在使用主题材料的方式产生重大影响。它不再可能