我们的正式会员代表澳大利亚的零售和批发基金管理业务、退休金基金、金融咨询持牌人和投资平台。我们的支持会员代表专业服务公司,例如 ICT、咨询、会计、法律、招聘、精算和研究机构。金融服务业负责为超过 1560 万澳大利亚人投资超过 3 万亿美元。管理的资金池比澳大利亚的 GDP 和澳大利亚证券交易所的市值还要大,是世界上最大的管理资金池之一。
1纳米 - 电子中心(NET),电气工程学院,工程学院,Universiti teknologi Mara,40450 Shah Alam,马来西亚2号雪兰莪2号电气工程学院,工程学院,Teknologi teknologi Mara,Terengganu Mara,Terengun Branch,Dungun Campus,23000 Dungun funcation and nenne nanne nanne nensia,纳米技术,科学研究所(IOS),Universiti teknologi Mara,40450 Shah Alam,雪兰莪,马来西亚4电气和电子工程技术学院,马来西亚大学马来西亚大学,Hang tuah jaya,MALASKA,MELARESIA,MARARESIA INDERCENIOL,MALAKE MARANOMIAL INCERATION,MALARESIA INDERCTION,MARASIINOLIOG马来西亚槟城的Atang Pauh 6马来西亚Sabah大学工程学院,88400 Kota Kinabalu,马来西亚Sabah,马来西亚Sabah 7应用科学学院,Universiti Teknologi Mara,40450 Shah Alam,Shah Alam,Selangor,Selangor,Malaysia 8 Physemia and Malaysia school and Malaysia school and Malaysia school and Malaysia cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres cres abdur,印度钦奈 Vandalur 科学技术研究所 600 048 9 马来西亚苏丹依德里斯教育大学科学与数学学院纳米技术研究中心 35900 丹戎马林 10 马来西亚敦胡先翁大学电气与电子工程学院微电子与纳米技术 - Shamsuddin 研究中心
经济与战略研究中心 (CRES) 通过支持采用最先进的分析和实证方法的科学研究来增进对企业和市场的了解。CRES 资助的研究旨在发表在顶级学术期刊上,解决了许多经济和战略领域的实质性问题。除了研究援助(包括博士生资助和数据收集)外,CRES 还支持内部和外部研究的频繁演讲、国内和国际短期访问者、CRES 研究员以及包含大量研究列表的网站。
CRE在决定要披露多少信息时需要采取判断。披露过多的人可能有可能为主要用户掩盖物质信息,同时披露太少可能导致物质信息被省略。cres应同时考虑其主要用户的特征,以及进行这些评估时自己独特的事实和情况。我们希望随着CRE对要求和准备与气候相关的披露的越来越熟悉,并且随着它们的内部过程变得更加嵌入,这些判断会随着时间的流逝而有所改善。
顺式调节元件(CRE),例如启动子和增强子,是直接调节基因表达的相对较短的DNA序列。CRE的适应性,通过其调节基因表达的能力来衡量,高度取决于Nu-Cleotide序列,尤其是特定的基序被称为转录因子结合位点(TFBSS)。设计高素质CRE对于治疗和生物工程应用至关重要。当前的CRE设计方法受两个主要缺点的限制:(1)他们通常依靠迭代优化策略来修改现有序列并易于局部Optima,并且(2)他们缺乏序列优化的生物学先验知识的指导。在此过程中,我们通过提出一种生成方法来解决这些局限性,该方法杠杆化的增强学习(RL)以微调预先训练的自动回旋(AR)模型。我们的方法通过得出基于综合推理的奖励来模拟激活剂TFBS并去除阻遏物TFBS,从而结合了数据驱动的生物学先验,然后将其集成到RL过程中。我们在两个酵母媒体条件下的启动子设计任务和三种人类细胞类型的增强剂设计任务中评估了我们的方法,这表明了其产生高素质CRE的能力,同时保持序列多样性。该代码可在https://github.com/yangzhao1230/taco上找到。
顺式调节元件(CRE),例如启动子和增强子,是直接调节基因表达的相对较短的DNA序列。CRE的适应性,通过其调节基因表达的能力来衡量,高度取决于Nu-Cleotide序列,尤其是特定的基序被称为转录因子结合位点(TFBSS)。设计高素质CRE对于治疗和生物工程应用至关重要。当前的CRE设计方法受两个主要缺点的限制:(1)他们通常依靠迭代优化策略来修改现有序列并易于局部Optima,并且(2)他们缺乏序列优化的生物学先验知识的指导。在此过程中,我们通过提出一种生成方法来解决这些局限性,该方法杠杆化的增强学习(RL)以微调预先训练的自动回旋(AR)模型。我们的方法通过得出基于综合推理的奖励来模拟激活剂TFBS并去除阻遏物TFBS,从而结合了数据驱动的生物学先验,然后将其集成到RL过程中。我们在两个酵母媒体条件下的启动子设计任务和三种人类细胞类型的增强剂设计任务中评估了我们的方法,这表明了其产生高素质CRE的能力,同时保持序列多样性。该代码可在https://github.com/yangzhao1230/taco上找到。
顺式调节元件(CRE),例如启动子和增强子,是调节基因表达的DNA序列。CRE的活性受到序列基序的顺序,组成和间距的影响,这些序列基序被称为转录因子(TFS)结合的序列基序。合成CRE具有特定特性。在这里,我们提出了Reglm,这是一个设计具有所需属性的合成CRE的框架,例如高,低或细胞类型 - 特定活动,并使用自回归语言模型与有监督的序列到功能模型结合。我们使用框架设计合成酵母启动子和细胞类型 - 特定的人类增强剂。我们证明,我们方法产生的合成CRE不仅被预测具有所需的功能,而且还包含类似于实验验证的CRE的生物学特征。reglm因此促进了现实的调节DNA元素的设计,同时提供了对顺式调节代码的见解。
摘要解释非编码GWAS变体的功能意义仍然具有挑战性。虽然与细胞类型的特定顺式调节元件(CRE)共定位变体促进了我们的理解,但许多变体仍然无关。在这项研究中,我们提出了Gem-Finder(用于精细发现启动子链接变体的基因组元素映射),这是一个新型的分析框架,该框架整合了转录组,表观基因组(H3K27AC CHIP-SEQ)和染色质相互作用数据。Gem-Finder利用远程染色质相互作用来识别连接特定细胞类型的差异表达基因的CR。当我们将宝石 - 芬德用于内皮分化时,与主要针对细胞类型特异性CRE的常规方法不同,Gem-Finder识别出7.6倍的疾病/性状关联。具体而言,通过整合转录组,表观基因组(尤其是H3K27AC CHIP-SEQ)和内皮分化过程中的远程染色质相互作用,我们确定了与分化特异性基因相关的CRE。我们的丰富分析揭示了53种人类疾病/特征的共同和独特的关联。值得注意的是,其中大多数(68%)以特定于分化的方式表现出独特的关联。血液学特征和神经精神疾病主要与内皮分化的最后阶段有关,而几种复杂的疾病(例如结直肠癌(CRC))与后期意外相关。我们的发现强调了利用远程染色质相互作用以准确识别与疾病相关的CRE在非编码GWAS变体的功能表征中的重要性。
顺式调节元件(CRE)与反式调节剂相互作用以编排基因表达,但是在多基因基因座中如何协调转录调控尚未实验定义。我们试图表征控制相邻共刺激基因CD28,CTLA4和ICO的动态表达的CRE,并编码了T细胞介导的免疫的调节剂。平铺CRISPR干扰(CRISPRI)筛选在常规和调节子集的原代人T细胞中,发现的基因,细胞子集和刺激特异性CRE。与CRISPR敲除筛选和针对转座酶可访问的染色质的测定(ATAC-SEQ)分析确定了在特定的CRISPRI-RESPONSIME元素上影响染色质状态的反式调节剂,以控制共刺激基因表达。然后,我们发现了一个关键的CCCTC结合因子(CTCF)边界,该边界增强了与CTLA4的相互作用,同时还可以防止CD28的混杂激活。通过系统地绘制CRE和相关的反式调节剂直接在原代人T细胞子集中,这项工作克服了长期存在的实验局限性,以解码与免疫稳态至关重要的复杂的多基因基因座中的上下文相关基因调节程序。
许多植物物种的驯化和改良经常涉及转录输出的调节,并继续为靶向性状工程提供许多希望。然而,控制这些性状相关转录变体的顺式调控元件 (CRE) 位于非编码区内,目前大多数植物物种对这些区域的注释很少。这在大型作物基因组中尤其如此,因为调控区仅占整个基因组空间的一小部分。此外,人们对 CRE 如何调节植物转录的了解相对较少。因此,了解调控区在基因组中的位置、它们控制哪些基因以及它们的结构是可用于指导传统和合成植物育种工作的重要因素。在这里,我们描述了调控实例的经典示例以及植物调控基因组学的最新进展。我们重点介绍了有价值的分子工具,这些工具可以大规模识别 CRE,并提供有关基因如何在不同植物物种中受到调控的前所未有的见解。我们重点关注染色质环境、转录因子 (TF) 结合、转座因子的作用以及调控区域与靶基因之间的关联。