通过施用外源甲基甲酸酯,研究人员能够恢复男性菌株的生育能力,从而能够产生F1杂交种子。与传统系统相比,这种新的两行系统为混合种子生产提供了一种更直接,更有效的方法,而传统系统通常面临环境稳定性问题。
群集定期间隔短的短质体重复序列(CRISPR)相关蛋白(CAS)系统通过提供高精度和多功能性来彻底改变了基因组编辑。然而,大多数基因组编辑应用都依赖数量有限的良好特征的CAS9和CAS12变体,从而限制了更广泛的基因组工程应用的潜力。在这项研究中,我们广泛探索了CAS9和Cas12蛋白,并开发了Casgen,这是一种基于边缘的基于边缘的潜在空间正则化的新型深层生成模型,以增强新生成的Cas9和Cas12蛋白的质量。具体来说,卡斯根采用一种结合分类来过滤非CAS序列的策略,对潜在空间的贝叶斯优化来指导功能相关的设计,并使用基于Alphafold的分析进行彻底的结构验证,以确保稳健的蛋白质产生。我们从知名的生物数据库(例如InterPro和PDB)中收集了一个具有3,021 cas9、597 Cas12和597个非CAS蛋白序列的综合数据集。为了验证生成的蛋白质,我们使用BLAST工具进行了序列对齐,以确保新颖性并过滤到与现有CAS蛋白的高度相似序列。使用AlphaFold2和AlphaFold3的结构预测证实,生成的蛋白质与已知CAS9和CAS12变体具有很高的结构相似性,TM分数在0.70至0.85之间,并且root-Mean-square偏差(RMSD)值低于2.00。序列身份分析进一步表明,生成的CAS9直系同源物在已知变体中表现出28%至55%的身份,而CAS12A变体的身份高达48%。我们的结果表明,提出的CAS生成模型具有通过设计保留功能完整性的各种CAS蛋白来扩展基因组编辑工具包的重要潜力。开发的深层生成方法为合成生物学和治疗应用提供了有希望的途径,从而为开发了更精确,更通用的CAS基因组编辑工具的开发。
群集定期间隔短的短质体重复序列(CRISPR)相关蛋白(CAS)系统通过提供高精度和多功能性来彻底改变了基因组编辑。然而,大多数基因组编辑应用都依赖数量有限的良好特征的CAS9和CAS12变体,从而限制了更广泛的基因组工程应用的潜力。在这项研究中,我们广泛探索了CAS9和Cas12蛋白,并开发了Casgen,这是一种基于边缘的基于边缘的潜在空间正则化的新型深层生成模型,以增强新生成的Cas9和Cas12蛋白的质量。具体来说,卡斯根采用一种结合分类来过滤非CAS序列的策略,对潜在空间的贝叶斯优化来指导功能相关的设计,并使用基于Alphafold的分析进行彻底的结构验证,以确保稳健的蛋白质产生。我们从知名的生物数据库(例如InterPro和PDB)中收集了一个具有3,021 cas9、597 Cas12和597个非CAS蛋白序列的综合数据集。为了验证生成的蛋白质,我们使用BLAST工具进行了序列对齐,以确保新颖性并过滤到与现有CAS蛋白的高度相似序列。使用AlphaFold2和AlphaFold3的结构预测证实,生成的蛋白质与已知CAS9和CAS12变体具有很高的结构相似性,TM分数在0.70至0.85之间,并且root-Mean-square偏差(RMSD)值低于2.00。序列身份分析进一步表明,生成的CAS9直系同源物在已知变体中表现出28%至55%的身份,而CAS12A变体的身份高达48%。我们的结果表明,提出的CAS生成模型具有通过设计保留功能完整性的各种CAS蛋白来扩展基因组编辑工具包的重要潜力。开发的深层生成方法为合成生物学和治疗应用提供了有希望的途径,从而为开发了更精确,更通用的CAS基因组编辑工具的开发。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年3月6日。 https://doi.org/10.1101/2025.02.28.640817 doi:Biorxiv Preprint
这项研究是代表研究与创新专家委员会(EFI)进行的。发现和解释是进行研究的研究所的唯一责任。EFI对报告的措辞没有任何影响。表演学院斯坦福法学院皇冠四角,559 Nathan Abbott Way,Stanford CA 94305-8610,美国www.law.stanford.edu Derman Innovation No.12-2021 ISSN 1613-4338截止日期2021年2月出版商研究与创新专家委员会(EFI)办公室Pariser Platz 6 | D-10117柏林www.e-fi.de保留所有权利,特别是复制,分销和翻译的权利。未经EFI或Institute的书面批准,使用任何形式的电子系统(通过影印本,微胶片或任何其他过程)可以复制或存储,处理,重复或分布。联系和更多信息Samantha Zyontz Stanford博士法学院皇冠四边形,559 Nathan Abbott Way,Stanford CA 94305-8610,美国T + 001(0)65 07 23 24 65 65 M szyontz@law.stanford.stanford.stanford.stanford.edu
当前的基因组编辑工具使许多物种中选定的DNA序列的靶向诱变。但是,通过基因组编辑方法引入突变的效率和类型在很大程度上取决于目标位点。因此,很难预测编辑操作的结果。因此,量化突变频率的快速测定对于正确评估基因组编辑作用至关重要。我们开发了两种快速,具有成本效益且容易适用的方法:(1)潮汐,可以准确识别和量化插入和删除(indels),这些插入和删除(indels)在引入双链断裂后出现的(dsbs); (2)Tider,适用于模板介导的编辑事件,包括点突变。这两种方法仅需要一组PCR反应和标准的Sanger测序运行。通过潮汐或TIDE算法分析序列轨迹(可在https://tide.nki.nl或https://deskgen.com上获得)。例程很容易,快速,并且提供了比当前基于酶的测定更详细的信息。潮汐和TIDE加速基于DSB的基因组编辑策略的测试和设计。
CRISPR – CAS系统需要在适应和干扰过程中歧视自我与非自我DNA。然而,已经报道了含有自动靶向垫片(STS)的细菌的多种情况,即CRISPR垫片针对同一基因组上的蛋白酶。sts被建议将电力自动免疫作为CRISPR-CAS防御的不良副作用或基因表达的调节机制。在这里,我们研究了超过1万个细菌基因组中STS的刺激性,分布和逃避。我们在所有CRISPR- CAS类型中发现了STS,并且在所有携带CRISPR的细菌的五分之一中。值得注意的是,多达40%的I-B和I-F CRISPR - CAS系统包含STS。我们观察到,含有基因组的STS几乎总是带有预言,并且在超过一半的情况下,STS映射到预言区域。尽管携带了STS,但CRISPR-CAS系统的遗传降低似乎很少见,这表明通过其他机制(例如抗crispr蛋白质和CRISPR靶标),STS对STS的潜在有害作用有很高的水平。我们提出了一种场景,在该方案中,可以通过I型系统中的启动间隔者获取启动间隔者的获取,而没有有害的Au-Au-tomunity效应,这可能会触发更广泛的STS堆积,而无需将自动免疫性逃避的机制造成了耐受性,从而耐受了STS的预测耐受性。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。这是该版本的版权持有人,该版本发布于2020年12月3日。 https://doi.org/10.1101/2020.12.03.409417 doi:Biorxiv Preprint
简介评论:引言有效地介绍了CRISPR/CAS9系统的历史背景,从而将其从Escherichia Coli的发现成为其作为基因编辑工具的发展。Jennifer Doudna和Emmanuelle Charpentier的贡献得到了充分的详细说明,强调了他们独立的研究工作和最终的合作。CRISPR机制的解释是彻底的,涵盖了关键组成部分,例如Cas9蛋白,引导RNA,tracrrna和crrna。基因编辑过程的分步分解,包括DNA裂解,序列靶向和基因剪接,为理解系统的功能提供了强大的基础。提及PAM序列及其在特异性中的作用可确保在解释目标位点选择方面的清晰度。