1 柑橘研究中心“Sylvio Moreira” – 农学研究所 (IAC),Cordeiro ´ polis,巴西,2 生物研究所,坎皮纳斯州立大学 (Unicamp),坎皮纳斯,巴西,3 甘蔗研究中心 – 农学研究所 (IAC),里贝朗普雷图,巴西,4 里贝朗普雷图医学院,圣保罗大学 (USP),里贝朗普雷图,巴西,5 坎皮纳斯农学研究所 (IAC) 咖啡中心,坎皮纳斯,巴西,6 Embrapa 咖啡,巴西农业研究公司,巴西利亚,联邦区,巴西,7 生物学系,哲学、科学与文学学院,圣保罗大学 (USP),里贝朗普雷图,巴西,8 遗传学系,路易斯·德·凯罗斯农业学院 (ESALQ),圣保罗大学 (USP),皮拉西卡巴,巴西
摘要:干细胞研究进展迅速,由于其独特的自我更新和多能分化能力,为难治性疾病提供了有希望的治疗方法。干细胞在治疗遗传疾病、神经退行性疾病 (NDD)、心血管疾病和癌症方面发挥着关键作用。在遗传疾病中,将干细胞与 CRISPR-Cas9 等基因编辑工具相结合,可以精确纠正致病基因,而健康的干细胞则通过替换患病细胞来修复组织。对于 NDD,iPSC 可以分化为多巴胺能神经元,以取代受损的脑细胞并增强神经再生。在心血管疾病中,它们促进心肌和血管修复。在癌症中,干细胞增强抗肿瘤免疫力并将药物直接输送到肿瘤部位,从而提高治疗效果。尽管取得了这些突破,但挑战依然存在。高质量干细胞的生产有限,控制分化以防止肿瘤发生仍然至关重要。同种异体移植存在免疫排斥的风险,而使用胚胎干细胞则引发了伦理问题。需要制定监管框架和临床标准来确保安全性和有效性,同时解决道德和患者权利问题。随着不断创新,干细胞疗法将彻底改变医学,为复杂疾病提供新方法并改善全球健康。
成簇的规则间隔回文重复序列被称为 CRISPR。它是一种可以编程来改变、消除或激活基因组的蛋白质。这项尖端技术提供了广泛的实施可能性,并将在未来几年彻底改变口腔保健。最广泛使用的基因组编辑技术包括归巢内切酶、转录激活因子样效应核酸酶、锌指核酸酶和 CRISPR-CRISPR 相关蛋白 9 (Cas9)。这些适应性强的基因组编辑工具可以以序列特异性的方式改变基因组。由于其高效和准确,基因组编辑方法 CRISPR-Cas9 已引起人们的关注,成为抗击癌症的有力武器。本综述介绍了这种方法及其用途,特别是在牙科领域的用途。
许多蛋白质家族由多种高度同源蛋白组成,无论它们是由不同基因编码还是来自相同基因组位置的编码。某些同工型的优势与各种病理状况(例如癌症)有关。研究中蛋白质同工型的检测和相对定量通常是通过免疫印迹,免疫组织化学或免疫荧光来完成的,其中使用针对特定家族成员的同工型特异性表位的抗体。但是,同工型特异性抗体并非总是可用的,因此无法破译同工型特异性蛋白表达模式。在这里,我们描述了多功能11氨基酸标签的插入到感兴趣蛋白质的基因组位置中。此标签是开发的,由Promega(美国威斯康星州Fitchburg)发行。本协议描述了高度同源蛋白的精确蛋白质表达分析,通过hibit标签的表达,当缺失特定抗体时,可以实现蛋白质表达定量。可以通过传统方法(例如蛋白质印迹或免疫荧光)以及在荧光素酶二元报道器系统中分析蛋白质表达,从而可以使用板读取器进行可靠且快速的相对表达定量。
在此背景下,两大研究团队围绕CRISPR-Cas9技术基础专利持续数年的争端显得尤为重要。 4 一边是布罗德研究所(由麻省理工学院和哈佛大学联合支持)的张锋,另一边是 Emmanuelle Charpentier 和 Jennifer Doudna。这场争议涉及 CRISPR-Cas9 技术基本要素的权利。尽管卡彭蒂耶和杜德纳于2020年10月因其研究获得了诺贝尔化学奖,但张锋迄今为止在美国这场纠纷中胜过了研究人员。然而,法律情况很复杂——部分原因是不同的司法管辖区会出现不同的结果。
在整个细胞发育中,DNA可能遭受威胁基因组完整性和细胞存活的损害。最有害的病变之一是双链DNA断裂(DSB),因为它可能导致基因组信息的丢失。DSB可能自然发生在细胞代谢期间,也可能是由外部因素触发的(Deriano; Roth,2013)。无论哪种方式,这些损坏都会通过细胞立即修复,主要是通过两种途径:非同源末端连接(NHEJ)或同源指导修复(HDR)。与通过NHEJ进行修复不同,NHEJ仅将裂解的DNA的末端连接起来(请参阅第2章),HDR途径需要存在相同或非常相似的模板,即完整的序列,以准确地修复病变的DNA(Heyer等人,2010年)。提供用于HDR中使用的模板的可能性代表了通过同源重组(HR)途径进行基因编辑的关键元素,该途径可能被利用为几种新的繁殖技术(NBT)之一。
传统的放大方法与指南RNA的分子不适应,因此第一作者和前博士后研究员LoϊcBinan制定了一种创新的策略,以在其原始站点生成每个指南RNA的许多本地副本。通过将其与称为Merfish的基于荧光的空间转录组方法结合起来,在空间环境中,witturb-fish可以揭示每个扰动的身份和细胞的转录组。
亚培养从粘附细胞中去除旧培养基,并用无钙和镁的PBS洗涤它们。使用3-5毫升PBS进行T25瓶,T75瓶子使用5-10毫升。然后用电池完全覆盖电池,用1-2 mL盖住T25瓶,T75瓶的2.5毫升。让细胞在室温下产生8-10分钟,以松开它们。孵育后,将细胞与10 ml培养基仔细混合,以重悬于它们,然后以300xg离心3分钟。扔掉上清液,将细胞重悬于新鲜培养基中,然后将其转移到已经包含新鲜培养基的新瓶中。
由于其NUP96-MEGFP合并蛋白的表达稳定,并保持U-2 OS系列的典型特性,包括在与癌细胞迁移和转移有关的研究中至关重要的稳健细胞骨架结构,因此选择了该特定克隆的数字195。使用CRISPR技术可确保精确的基因编辑,从而最大程度地减少了可以削弱实验结果完整性的外观作用。这确实会做U-2 OS-CRISPR-NUP96-MEGFP KLON No.195对于高分辨率成像技术和细胞结构的详细研究特别有用,这有助于细胞生物学,癌症研究和核转运现象的高级研究。
该工具在Tulane开发的工具与大学卫生网络/多伦多大学,肺炎儿童健康研究(PERCH)研究的样品进行了测试,以及国际Mycose预防,研究,研究,实施,网络和培训(Imprint)联盟(Impint)。