使用核酸酶折叠的cas9融合到转录效应子分子的核酸酶,可以用CRISPR-CAS9系统(CRISPRA/CRISPRI)诱导靶向转录激活或干扰。这些技术已在癌细胞系中使用,特别是用于使用慢病毒载体的全基因组功能遗传筛选。但是,由于缺乏有效和无毒的递送方式,CRISPRA和CRISPRI尚未广泛应用于具有治疗相关性的离体培养的原代细胞。在这里,我们通过电穿孔基于RNA或核糖核蛋白(RNP)递送的CRISPRA和CRISPRI平台,并在原代细胞(包括人CD34 +血液 - 诗歌干和祖细胞和祖细胞(HSPC)和人CD3 + T细胞中显示短暂的,可编程的基因调节。我们使用来自不同细菌物种的多个SGRNA和CRISPR系统显示了多重和正交基因调制,并且我们表明CRISPRA可用于操纵HSPC的分化轨迹。这些平台构成了简单有效的手段,可以瞬时控制转录,并通过合成SGRNA轻松地采用并将其重新编程为新的靶基因。我们认为,这些技术将在工程中广泛使用用于干细胞生物学和基因功能的转录组,并且我们预计它们将被实施以开发和增强细胞疗法。
化疗耐药性在癌症死亡率中起着重要作用。为了确定影响对阿糖胞苷(AML 的主要治疗方法)敏感性的基因单元,我们基于双蛋白质编码和非编码集成 CRISPRa 筛选 (DICaS) 开发了一个全面的全基因组平台。最初使用来自 517 种人类泛癌细胞系的药物遗传学数据确定了假定的抗性基因。随后,通过 CRISPR 激活对编码和 lncRNA 基因进行了基因组规模的功能表征。对于 lncRNA 功能评估,我们开发了一种 CRISPR 激活 lncRNA (CaLR) 策略,针对 14,701 个 lncRNA 基因。计算和功能分析确定了新的细胞周期调控、存活/凋亡和癌症信号基因。此外,我们分析中确定的 GAS6-AS2 lncRNA 的转录激活导致 GAS6/TAM 通路过度激活,这是包括 AML 在内的多种癌症的耐药机制。因此,DICaS 代表了一种新颖而强大的方法,用于识别与治疗相关的综合编码和非编码途径。
肥胖,全球健康挑战,需要有效,可访问和创新的治疗模型。在这里,我们开发了一种可用于肥胖症的索诺 - 基因治疗的时空可控的微针(MN)药物输送平台。该平台提供了甲氧基聚乙烯聚乙烯 - 聚乙烯亚胺(MPEG-PEI)修饰的金属有机框架(MOFS)Sonosensitizer,并定期散布的短侧滴定palindromic重复激活(CRISPRA)/CRISPRA-CRISPRA-INC-INCUNCPARA-INSCORTERS in-INSCORTERS in INSTERTERS ADINCERTERS 1(UCPPERTALLY 1(UCPPERTALLY 1(UCPERTALLY 1)。总体而言,该疗法平台能够实现两种主要的“ an灭”和“对策”的策略:一种是通过声差疗法杀死多余的白色脂肪细胞,另一个是通过可控的CRISPRA-UCP1系统和Sonodynalnalnamic效应来促进白色脂肪细胞的褐变。用这种声音疗法治疗的肥胖雄性小鼠表明葡萄糖耐受性和胰岛素敏感性明显改善,成功地实现了体重减轻并约束重量反弹。这项研究可能使肥胖和其他代谢疾病的索诺基因治疗能够实现标准治疗范例。
基于 CRISPR 的基因激活 (CRISPRa) 是一种通过以组织/细胞类型特异性的方式靶向启动子或增强子来上调基因表达的策略。在这里,我们描述了一个实验框架,该框架将高度多路复用的扰动与单细胞 RNA 测序 (sc-RNA-seq) 相结合,以识别细胞类型特异性、CRISPRa 响应的顺式调控元件及其调控的基因。将许多 gRNA 的随机组合引入许多细胞中的每一个,然后对其进行分析并分成测试组和对照组,以测试 CRISPRa 对增强子和启动子的扰动对邻近基因表达的影响。将该方法应用于 493 个 gRNA 文库,这些 gRNA 靶向 K562 细胞和 iPSC 衍生的兴奋性神经元中的候选顺式调控元件,我们识别出能够特异性上调预期靶基因且 1 Mb 内没有其他邻近基因的 gRNA,包括导致神经元中六种自闭症谱系障碍 (ASD) 和神经发育障碍 (NDD) 风险基因上调的 gRNA。一致的模式是,单个增强子对 CRISPRa 的响应受细胞类型的限制,这意味着成功激活基因依赖于染色质景观和/或其他反式因子。本文概述的方法可能有助于大规模筛选以细胞类型特异性方式激活基因的 gRNA。
改造细菌代谢以有效地从多步骤途径产生化学物质和材料需要优化多基因表达程序以实现酶平衡。CRISPR-Cas 转录控制系统正在成为编程多基因表达调控的重要代谢工程工具。然而,向导 RNA 折叠的可预测性较差会通过不可靠的表达控制破坏酶平衡。我们设计了一组可以描述向导 RNA 折叠的计算参数,我们预计它们可以广泛适用于 CRISPR-Cas9 系统。在这里,我们将修饰的向导 RNA (scRNA) 对大肠杆菌中 CRISPR 激活 (CRISPRa) 的功效与描述折叠成活性结构的速率的动力学参数相关联。此参数还支持正向设计新的 scRNA,在我们的筛选中没有观察到失败。我们使用来自该组的 CRISPRa 靶序列来设计一个由三个合成启动子组成的系统,该系统可以在 >35 倍的动态范围内正交激活和调整所选输出的表达。独立的激活调节允许通过 64 个成员的组合三重 scRNA 库对三维表达设计空间进行实验探索。我们将这些 CRISPRa 程序应用于两种生物合成途径,证明了大肠杆菌中有价值的蝶啶和人乳寡糖产品的生产。对这些设计空间进行分析表明,表达组合产生的滴度比最大表达产生的滴度高出 2.3 倍。映射生产还可以确定瓶颈作为途径重新设计的目标,将寡糖乳糖-N-四糖的滴度提高 6 倍。在计算 scRNA 功效预测的帮助下,组合 CRISPRa 策略能够有效优化多步骤代谢途径。更广泛地说,这里揭示的引导 RNA 设计规则可能使有效的多引导程序的常规设计成为可能,用于细菌宿主中 CRISPR 基因调控的广泛模型和数据驱动应用。
血管生成基因过表达已成为众多血管再生基因治疗项目的主要策略。然而,大多数项目在临床试验中都失败了。CRISPRa 技术以最高的效率和安全性在 sgRNA 的识别基础上提高基因过表达水平。CRISPick 和 CHOP CHOP 是用于预测 sgRNA 的最广泛使用的 Web 工具。我们的研究目的是分析这两个平台对于涉及不同人类参考基因组(GRCH 37 和 GRCH 38)的血管生成基因(VEGFA、KDR、EPO、HIF-1A、HGF、FGF、PGF、FGF1)的 sgRNA 设计的性能。从不同方面分析了这两个工具提出的排名前 20 的 sgRNA。与 sgRNA 结合位点相关的 DNA 曲率没有发现显著差异,但使用 CRISPick 时,sgRNA 预测的靶向效率显著更高。此外,同一平台在 EPO、EGF、HIF-1A、PGF 和 HGF 中的平均排名变化较大,而在 KDR、FGF-1 和 VEGFA 中未达到统计显著性。不同平台之间排名位置的重排分析也不同。CRISPick 被证明在与更完整的基因组相关的最佳 sgRNA 建立方面更准确,而 CHOP CHOP 显示出更窄的分类重排。2022 由 Elsevier BV 代表计算和结构生物技术研究网络出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
图 1. 现有 Cas12a CRISPRa 技术的评估。A) 采用两种不同的 Cas12a 核酸酶失活突变的 CRISPRa 构建体的比较。通过转导五天后表达 CD4 的细胞百分比来测量激活程度。B) 针对采用直接与 dCas12a (D908A) 连接的 TAD 组合的 12 种 CRISPRa 构建体变体,以基线表达为标准对 CD4 平均荧光强度 (MFI)。C) 示意图描绘了基于流式细胞术的平铺筛选的概览,该筛选用于识别其他活性 Cas12a CRISPRa 指南。D) 根据指南靶位点相对于 CD4、CD26、CD97 和 CD274 的转录起始位点 (TSS) 的位置绘制了每个指南在技术重复中的绝对最小 LFC 的 Z 分数。
在具有工业前景的细菌中创建 CRISPR 基因激活 (CRISPRa) 技术可能会对加速数据驱动的代谢工程和菌株设计产生变革性影响。CRISPRa 已广泛应用于真核生物,但在细菌系统中的应用仍然有限。最近的研究表明,细菌启动子的多种特性对 CRISPRa 介导的基因激活提出了严格的要求。然而,通过系统地定义有效的细菌 CRISPRa 位点的规则并开发在工程向导 RNA 中编码复杂功能的新方法,现在有明确的途径来推广细菌中的合成基因调控。当与多组学数据收集和机器学习相结合时,细菌 CRISPRa 的全面开发将通过加速设计-构建-测试-学习循环,大大提高快速工程化细菌进行生物生产的能力。
最近开发的CRISPR激活剂(CRISPRA)系统使用基于CRISPR-CAS效应子的转录激活剂有效地控制靶基因的表达而不会引起DNA损伤。但是,基于CAS9/CAS12A的现有CRISPRA系统必须在效力和准确性方面提高,这是由于与CRISPR-CAS模块本身相关的限制。为了克服这些局限性,并有效,准确地调节基因表达,我们基于小的CRISPR-CAS效应子candidatus woesearchaeota cas12f(CWCAS12F)开发了一个有效的CRISPRA系统。通过设计CRISPR-CAS模块,链接激活域,并使用接头和核定位信号序列的各种组合,优化的ECWCAS12F-VPR系统启用了与使用现有CRISPRA系统相比,基因表达的有效和目标特定于基因表达的调节。这项研究中开发的ECWCAS12F-VPR系统具有控制生物体内源基因转录的巨大潜力,并为未来的基因疗法和生物学研究提供了基础。