功能性遗传筛选是一种重要方法,已被广泛用于探索遗传元素的生物学过程和功能注释。crispr/cas(群集定期间隔短的短质体重复序列/CRISPR相关蛋白)是遗传学家工具箱中的最新工具,使研究人员能够以前所未有的轻松,准确性和高吞吐量编辑基因组。最近,CRISPR干扰(CRISPRI)是作为一种新兴技术开发的,该技术利用了催化无效的Cas9(DCAS9)和单个指导RNA(SGRNA)来抑制序列特异性基因。在这篇综述中,我们总结了CRISPRI系统的特征,例如可编程,高度效率和特定的特征。此外,我们证明了其在功能遗传筛查中的应用,并强调了其剖析发病机理的潜在机制的潜力。CRISPRI系统的最新发展将为细菌中功能上重要的基因发现提供高通量,实用和有效的工具。
文库。除此之外,源井还提供CRISPR-KO、CRISPRa、CRISPRi 三大定制文库从高通量sgRNA 文
文库。除此之外,源井还提供CRISPR-KO、CRISPRa、CRISPRi 三大定制文库从高通量sgRNA 文
文库。除此之外,源井还提供CRISPR-KO、CRISPRa、CRISPRi 三大定制文库从高通量sgRNA 文
文库。除此之外,源井还提供CRISPR-KO、CRISPRa、CRISPRi 三大定制文库从高通量sgRNA 文
神经退行性疾病的治疗方法仍然相当有限,包括额颞叶痴呆 (FTD) 和肌萎缩侧索硬化症 (ALS),这强调了对更深入的机制洞察和疾病相关模型的需求。开发传统的敲除和转基因小鼠需要大量的时间和资金,这阻碍了我们开发遗传风险因素、疾病修饰剂和其他 FTD/ALS 相关靶点的新型疾病模型的能力。为了克服这些限制,我们生成了一种新型 CRISPRi 干扰 (CRISPRi) 敲入小鼠。CRISPRi 使用催化死亡形式的 Cas9,与转录阻遏物融合以敲低蛋白质表达,然后引入针对目的基因的单个引导 RNA。为了验证该模型的实用性,我们选择了 TAR DNA 结合蛋白 (TDP-43) 剪接靶点 stathmin-2 (STMN2)。由于 TDP-43 活性丧失,STMN2 RNA 在 FTD/ALS 中下调,并且 STMN2 缺失被认为在 ALS 发病机制中发挥作用。STMN2 功能丧失与 FTD 的关系尚未确定。我们发现与对照组相比,家族性 FTD 病例中的 STMN2 蛋白水平显著降低,这表明 STMN2 耗竭可能与 FTD 的发病机制有关。在这里,我们提供了概念证明,即我们可以同时敲低 Stmn2 并表达 9 号染色体开放阅读框 72 ( C9ORF72 ) 基因中的扩增重复序列,成功复制 C9 相关病理的特征。有趣的是,Stmn2 的耗竭对二肽重复蛋白 (DPR) 的表达或沉积没有影响,但显著减少了磷酸化 Tdp-43 (pTdp-43) 内含物的数量。我们认为,我们的新型 CRISPRi 小鼠提供了一种多功能且快速的方法来沉默体内基因表达,并提出该模型将有助于了解孤立基因的功能或在其他神经退行性疾病模型的背景下的基因功能。
增强子产生双向非编码增强子RNA(ERNAS),可能调节基因表达。目前,ERNA函数仍然神秘。在这里,我们报告了一个5'上限的反义ERNA珍珠(与R-Loop组相关的PCDH ERNA),该珍珠从原始粘蛋白(PCDH)αHS5-1增强子区域转录。通过CRISPR/CAS9 DNA碎片编辑,CRISPRI和CRISPRA和CRISPRA以及锁定的核酸策略以及CHIRP,MEDIP,DRIP,QHR-4C和HICHIP实验,我们建立了PCDH lo loble(pcdh loble),通过CRISPR/CAS9 DNA碎片编辑,CRISPRI和CRISPRA以及锁定的核酸策略。在HS5-1增强子区域内,以促进远端增强子和靶启动子之间的长距离染色质相互作用。 尤其是,通过扰动转录伸长因子SPT6的ERNA珍珠水平升高导致PCDH Supertad内的局部三维染色质组织增强。 这些发现对分子机制具有重要的影响,HS5-1增强子可以调节大脑单个细胞中随机PCDHα启动子选择。通过CRISPR/CAS9 DNA碎片编辑,CRISPRI和CRISPRA以及锁定的核酸策略。在HS5-1增强子区域内,以促进远端增强子和靶启动子之间的长距离染色质相互作用。尤其是,通过扰动转录伸长因子SPT6的ERNA珍珠水平升高导致PCDH Supertad内的局部三维染色质组织增强。这些发现对分子机制具有重要的影响,HS5-1增强子可以调节大脑单个细胞中随机PCDHα启动子选择。
1. 纽约基因组中心,纽约,纽约州,美国 2. 纽约大学生物学系,纽约,纽约州,美国 3. 这些作者贡献相同 * 电子邮件:neville@sanjanalab.org 关键词:Cas9、诱变、汇集 CRISPR 筛选、CRISPRa、CRISPRi、原间隔区相邻基序
摘要:CRISPR 干扰(CRISPRi)筛选已用于使用单分子向导 RNA(sgRNA)文库识别与特定表型相关的靶基因。在 CRISPRi 筛选中,包含原始靶标识别序列的随机 sgRNA 文库的大小很大(∼ 10 12 )。在本文中,我们证明 sgRNA 中的靶标识别序列(TRS)的长度可以从原来的 20 个核苷酸(N 20 )缩短到 9 个核苷酸(N 9 ),这仍然足以使 dCas9 抑制大肠杆菌木糖操纵子中的靶基因,无论其与启动子还是开放阅读框区结合。基于结果,我们构建了 TRS 长度 5′ 缩短的随机 sgRNA 质粒文库,并通过对从 Xyl − 表型细胞中纯化的 sgRNA 质粒进行桑格测序来识别木糖代谢靶基因。接下来,利用随机 sgRNA 文库筛选靶基因,以增强合成大肠杆菌细胞中紫色素的产生。通过分析深紫色菌落中 sgRNA 质粒中的 TRS 冗余度,选择了 17 个靶基因。其中,已知有 7 个基因(tyrR、pykF、cra、ptsG、pykA、sdaA 和 tnaA)可增加细胞内 L-色氨酸池(紫色素的前体)。17 个细胞中每个靶基因有一个缺失,紫色素的产量显著增加。这些结果表明,使用缩短的随机 TRS 文库进行 CRISPRi 可以简单且经济高效地进行基于表型的靶基因筛选。关键词:CRISPR 干扰、失活 Cas9、随机文库、缩短的 sgRNA、靶标识别序列、紫色素、基于表型的靶标筛选■简介