摘要:在原子上薄的半导体中,CRSBR脱颖而出,因为它的散装和单层形式在磁性环境中均构成紧密结合的准二维激子。尽管对固态研究至关重要,但激子的寿命仍然未知。虽然Terahertz极化探测可以直接跟踪所有激子,而与带间选择规则无关,但相应的大型远场灶基本上超过了横向样品尺寸。在这里,我们将Terahertz极化光谱与近场显微镜结合在一起,以揭示CRSBR单层中的磁磁复发剂的飞秒衰减,该crsbr的单层比散装寿命短30倍。我们在散装CRSBR中揭示了结合和未结合的电子 - 孔对的低能指纹,并以无模型的方式提取单层的非平衡介电函数。我们的结果表明,首次直接访问CRSBR中准单维激子的超快速介电响应,可能会推进基于Ultrathin van der waals磁铁的量子设备的开发。关键字:原子上的固体,范德华磁铁,各向异性激子,超快动力学,飞秒近场显微镜,Terahertz
交换相互作用与磁结晶各向异性之间的竞争可能会带来具有极大兴趣的新磁状态。可以进一步使用施加的静水压力来调整其平衡。在这项工作中,我们研究了沿易于轴施加的外部磁场中双轴an- tiferromagnet的磁化过程。我们发现,在静液压压力下,在这种材料中观察到的ISIN类型的单磁管转变为两个过渡,这是一阶自旋flop跃迁,然后是二阶阶层向极化铁磁状态的二阶转变,接近饱和。通过使用高静水压力改变层间距离,在低温下,在层次的Bulk CRSBR中获得了这种可逆的调节,该磁相可以有效地作用于层间磁力交换上,并通过磁光谱光谱探测。
扭转二维范德华磁体可以形成和控制不同的自旋纹理,如 skyrmion 或磁畴。除了旋转角度之外,还可以通过增加形成扭转范德华异质结构的磁层数量来设计不同的自旋反转过程。在这里,A 型反铁磁体 CrSBr 的原始单层和双层被视为构建块。通过将这些单元旋转 90 度,可以制造对称(单层/单层和双层/双层)和不对称(单层/双层)异质结构。磁输运特性显示出磁滞的出现,这在很大程度上取决于施加磁场的大小和方向,不仅由扭转角度决定,还由形成堆栈的层数决定。这种高可调性允许在零场下切换易失性和非易失性磁存储器,并根据需要控制在负场或正场值下突然磁反转过程的出现。根据微磁模拟的支持,基于层中发生的不同自旋切换过程合理化了现象学。结果强调了扭转角和层数的组合是设计扭转磁体中自旋切换反转的关键要素,这对于自旋电子器件的小型化和实现新型自旋纹理很有意义。
摘要:本研究通过全面的光致发光(PL)表征研究了硫磺溴(CRSBR)的电子带结构。我们清楚地确定了两个紧密相邻的传导带状态和两个不同的价带状态之间的低温光学转变。对PL数据的分析稳健地揭示了跨CRSBR的不同厚度(从单层到散装)的不同厚度的能量分裂,带隙和激子跃迁。依赖温度依赖性PL测量阐明了在NE e el温度以下的频带拆分的稳定性,这表明镁与激子结合的元素负责使对称性断裂和从二级传导带最小值(CBM2)向全局价最大带(VBM1)的对称性破坏和增亮。共同揭示了在传导和价带中的分裂,而且还突出了我们对抗超磁性二维Van der waals晶体的光学,电子和磁性能之间相互作用的显着进步。
主席:巴兹尔11:00-11:40由六节点单体构建的二维二分晶格的贝斯利电子结构11:40-12:00 Zhou离子辐射诱导的磁相变过2D半导体CRSBR CRSBR CRSBR CRSBR CRSBR CRSBR 12:00-12:20 achilli Nevels Nevelli Nevels Nevelliut 12D carbon 2D Internaliuts 2D Internaligine -fartialitiation -fartialitiation -triptions 2D材料和理论:30:30:30:30:30:4调整超分子网络的热膨胀
摘要:Van der Waals(VDW)材料中的原子级缺陷是量子技术和量子传感应用的必不可少的基础。除了有直接的磁相图外,分层的磁性半导体CRSBR是探索光学活性缺陷的出色候选者,包括最近假设的缺陷诱导的磁性磁性在低温下。在这里,我们在CRSBR中显示出是局部磁性环境的探针的光学活性缺陷。我们观察到CRSBR中频谱狭窄(1 MEV)的缺陷发射,与散装磁序和额外的低温,缺陷诱导的磁性阶均相关。我们在局部和非局部交换耦合效应的背景下阐明了该磁顺序的起源。我们的工作建立了诸如CRSBR之类的VDW磁铁,是一个与磁性晶格相关的缺陷的特殊平台。我们预计,受控的缺陷创造允许量身定制的复杂磁纹理和具有直接光学访问的相位。关键字:CRSBR,范德华磁铁,缺陷发射,缺陷磁性,磁相关,磁性半导体,传感S
p1.1 2d Andreas BeerUniversitätRegensburg接近性诱导的交换交互和动态电荷转移在Mose2/Crsbr van-der-waals异质结构带有正交旋转纹理
图 1. (a) 单个 CrSBr 层晶体结构的顶视图。青色、黄色和粉色球分别代表铬、硫和溴原子。连接 Cr 原子的箭头表示第一、第二和第三邻域的 J 1 、 J 2 和 J 3 磁交换相互作用。 (b) 相同 CrSBr 结构的侧面图,显示沿 b 的自旋方向。 (ch) 计算的最大局部化 Wannier 轨道。绿色箭头表示最相关的磁性超交换通道,即 J 1 (c、f)、J 2 (d、g) 和 J 3 (e、h) 的 t 2g -eg (FM)、t 2g -t 2g (AFM) 和 eg -eg (AFM)。
功能。[1–6] 然而,迄今为止研究的大多数二维磁体的半导体特性都受到其导带和价带极窄宽度的强烈影响,通常为几十 meV 或更小。[7–13] 如此窄的带宽会导致电子局域化并阻碍低温电导率测量,这就是为什么探测二维半导体磁性的传输实验迄今为止仅限于研究穿过原子级薄多层势垒的隧穿。[14–21] CrSBr [22](见图 1a)——一种最近推出的二维磁性半导体——似乎是个例外。[23,24] 第一性原理计算(如图 1b 所示)预测其导带宽度约为 1.5 eV。 [24,25] 因此,可以成功进行低温平面磁阻测量(见图 1c、d),并通过分析确定磁相图。[23] 这种材料的独特磁性能通过范德华 (vdW) 界面实验得到进一步展示,其中发现 CrSBr 在相邻的石墨烯层中留下了巨大的交换相互作用,比早期在类似异质结构研究中报道的要强得多。[26]