Code Adult Indication RBC R1 Acute bleeding R2 Acute anaemia Stable patient 70g/L Hb Target = 70-90g/L R3 Acute anaemia Cardio vascular disease 80g/L Hb Target = 80-100g/L R4 Chronic Transfusion Dependant Anaemia 80g/L Hb Target =To prevent symptoms R5 Radiotherapy 110g/L BOS Blood requested in line with the NBT MSBOS (provide details) Code Indication FFP F1 Major haemorrhage F2 PT ratio/INR >1.5 with bleeding F3 PT ratio/INR >1.5 and pre- procedure F4 Liver disease with PT ratio/INR >2 and pre-procedure F5 TTP/plasma exchange F6 Replacement of single coagulation factor Code Indication CRYO C1 Clinically significant bleeding and纤维蛋白原<1.5g/L(产科出血)C2纤维蛋白原<1g/L和与溶栓疗法C4遗传性低纤维蛋白原血症相关的PRE-程序C3出血
• 高于 10kW 的 NEP 功率水平似乎为空间科学任务提供了真正的好处——样本返回任务检查了 20kW,初步高级优化表明 40kW 为行程时间和交付质量提供了额外的改进。 • 最大限度地提高 FSP 和 NEP 子系统之间的通用性(在可能的情况下),将有助于控制成本并实现更快速的应用。 • 如果充分发挥系统潜力(900s Isp),NTP 可能会为外行星任务提供关键的速度优势。 如果 NTP 仅用于地球出发以减少行程时间,那么新的商业发射能力可能会消除对液态氢长期低温储存的需求,但如果需要深空燃烧,也需要这项技术。 • 额外的质量不是对额外的科学研究(仪器太贵)的好处,而是对额外的屏蔽和机动性的好处,这对于高辐射环境、着陆器和样本返回任务来说可能非常重要。
干细胞通常在-80°C或低于-150°C的LN2蒸气中储存。最佳实践通常建议在水的玻璃过渡(TG)下方存储约-135°C。但是,在行业中,有关于-80°C的细胞回收/生存能力的讨论有限,但实验性的研究有限,而-190°C的细胞回收/生存能力。此外,在任何一个存储样品中,两种存储样品通常会在邻近的样品中反复暴露于环境环境。这种温度循环被认为会降低细胞活力,因为它诱导了细胞的热循环应力。由于影响融化后功能的许多变量,应在可能的情况下使用标准化,例如,应处理和存储在封闭的系统中,并具有其温度,瞬态暴露和访问控制和监视。本文的目标是证明储存温度和热循环对人间充质干细胞(HMSCS)的融化生存能力和功能的影响。为了进行这些实验,使用封闭系统的低温小瓶(细胞),-190°C的低温自动储存系统(Biostore III Cryo),-80°C Ult Freezer和低温转运(Cryopod)评估了系统。材料:
麻花钻 工作长度 NAS 907B 重型 135º 分割点 190-AG 型重型 Magnum .........6 190-CN 型 CN-TECH™ CRYO/NITRIDE .....7 170-AG 型 ......。。。。。。。。。。。。.8 - 9 * 128-AG 型 3/8 英寸柄 .............7 190 型黑色氧化物 ..........10 - 11 * 198 型 V-Line 黑色氧化物 .........15 190-AN 型氮化钛 .......10 - 11 190-ACN 型氮化钛碳 ...12 -14 类型 190-ALN 铝钛氮化物 12 -14 * 类型 190-GF Gold Strike™ 柄上有 3 个平面。.15 * 类型 190-GFR Gold Strike™ 3/8 英寸柄。.....15 * 非 NAS907B 机械长度 135º 分割点类型 175-AG。.....。。。。。。。。。。。。。28 型 178-AG 马格南 3/8 英寸柄 .........28 型 QR-AG 马格南 1/4 英寸六角柄 ......29 型 QR-AG 延长杆 3 英寸、6 英寸、12 英寸。..29 型 191 V 型黑色氧化物。..........28 工装长度 NAS 907A 型 340-A 黑色氧化物 118º 分割点。.。。。16 木工长度通用 118º 点类型 100 亮光饰面 。。。。。.......17 - 21 型 115 黑色氧化物 ..........17 - 21 型 170-W 公制 - 亮面处理 .........22 型 128 3/8 英寸缩小 - 亮面处理 .....23
1 澳大利亚维多利亚州墨尔本阿尔弗雷德研究联盟莫纳什大学中央临床学院糖尿病系;2 澳大利亚维多利亚州墨尔本贝克心脏与糖尿病研究所糖尿病并发症科;3 丹麦莫洛夫诺和诺德公司糖尿病并发症研究;4 澳大利亚维多利亚州墨尔本贝克心脏与糖尿病研究所人类健康与疾病表观遗传学项目;5 澳大利亚维多利亚州墨尔本贝克心脏与糖尿病研究所免疫代谢科造血与白细胞生物学;6 澳大利亚昆士兰州伍伦加巴昆士兰大学 Mater 研究所转化研究所;7 澳大利亚维多利亚州克莱顿莫纳什大学 Monash Ramaciotti 低温电子显微镜中心;8 澳大利亚维多利亚州墨尔本皇家儿童医院默多克研究所9 加拿大安大略省多伦多圣迈克尔医院基南生物医学科学研究中心和李嘉诚知识研究所;10 丹麦哥本哈根诺和诺德公司;11 美国华盛顿州西雅图诺和诺德研究中心;12 加拿大安大略省多伦多大学西奈山医院鲁南菲尔德-塔南鲍姆研究所医学系;13 澳大利亚维多利亚州帕克维尔莫纳什大学帕克维尔校区莫纳什药物科学研究所药物发现生物学
麻花钻 工作长度 NAS 907B 重型 135º 分割点 240-CN 型 CN-TECH ™ 低温氮化物 . . . .6 240-UB 型重型超硼 . . 6 - 7 643-UB 型 . . . . . . . . . . . . . . . . . . 8 - 9 * 278-UB 型 3/8" 柄 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15 * 非 NAS907B 机械长度 135º 分割点 250-UB 类型 . ... .29 QR-UB 型延长杆 3 英寸、6 英寸、12 英寸 . . .29 241-A 型 V 型线 黑色氧化物 . . . . . .28 作业长度 NAS 907A 340-A 型 黑色氧化物 118º 分割点 . .16 作业长度通用 118º 点 240-B 型 光亮表面 . . . . . . . . 17 - 21 643-W 型 公制 - 光亮表面 . . . . . . . . 22 278 型 3/8 英寸 RS 光亮表面 . . . . . . . . 23 240-BN 型 氮化钛 . . . . . . . 17 - 21 240 型 黑色氧化物 . . . . . . . . . . 17 - 21 643 型公制 - 黑色氧化物 . . . . . . . . . . . . . 22 248 型 V-Line 黑色氧化物 . . . . . . . . . . . . . . . 21 230 型 Tang Drive . . . . . . . . . . . . . . . . . . . 27
STS-50INSIGNIA STS050-S-001 - 由机组人员设计的 STS-50(美国微重力实验室,USML-1)的徽章,捕捉到一架在地球上空飞行的航天飞机,尾随 USML 旗帜。轨道器以典型的微重力科学姿态垂直放置,这个位置代表任务缩写标题中的数字“1”。这次飞行是 USML 系列飞行中的第一次,主要目标是微重力科学,由美国政府、工业界和学术界共同策划和执行。在有效载荷舱中可以看到太空实验室模块,以及将进行首次飞行的延长持续时间轨道器“低温”托盘。太空实验室模块上的小写“g”和希腊字母“mu”象征着用于材料科学和流体物理领域研究的微重力环境。大写字母“U”延伸到徽章边缘之外,象征着此次飞行中的实验有可能拓展微重力科学的现有知识范围。USML 大写字母中的星条旗和下方地球场景中的美国陆地反映了机组人员对所有机上实验源自美国的自豪感。NASA 航天飞机飞行徽章设计仅供宇航员使用,并供 NASA 管理员授权的其他官方使用。仅以插图形式向公众开放
电极中的界面不稳定性控制着锂离子电池的性能和寿命。虽然阳极上固体电解质界面(SEI)的形成引起了很多关注,但仍然缺乏对阴极上阴极 - 电解质界面(CEI)形成的阳极界面。为了填补这一空白,我们通过利用Operando数字图像相关性,阻抗光谱和冷冻X射线光电学光谱镜来报告有关磷酸锂,LifePo 4阴极的动态变形。Lifepo 4阴极在LIPF 6,LICLO 4或LITFSI中循环。在第一个周期之后,锂离子插入导致电化学菌株与(DIS)递送的状态之间几乎线性相关,而与电解质化学无关。但是,在LIPF 6中的第一个电荷 - 含有电解质的第一个电荷期间,在阳极电流上升开始时有明显的不可逆的正应变演化,并且在4.0V左右的电流衰减。阻抗研究表明,在相同的潜在窗口中表面阻力的增加,表明在阴极上形成了CEI层。CEI层的化学性质的特征是X射线光电子光谱。LIF,在第一个充电期间,电压以高于4.0 V的电压出现。我们的方法为阴极电极上CEI层的形成机理提供了新的见解,这对于为高性能电池开发可靠的阴极和电解质化学物质至关重要。
在丝粒介导的无误染色体隔离的控制过程中,细胞分裂过程中准确的染色体隔离的结构基础需要双极性附着在从相对的纺锤杆上发出的微管上的双极性附着,并维持姐妹 - 染色剂凝聚的维持,直到所有染色体都能实现所有染色体。两个调节这些过程的染色体位点:丝状附着位点由CENP -A核小体富集定义的微管附着位点和内侧丝粒,这是姐妹 - 染色剂之间的区域,这些区域可募集酶促活性(激酶,磷酸酶,磷酸酶和运动蛋白)。内侧丝粒相关酶选择性地稳定适合染色体双向染色体的染色体 - 微管附着,控制姐妹染色质被凝聚力并实现及时的染色体分离。这些过程中的错误可能导致非整倍性,这是一种涉及流产,出生缺陷和癌症的数值染色体畸变。使用集成结构功能方法(X射线晶体学,冷冻电子显微镜,交联/质谱法,具有基于人类细胞线的功能分析的生化/生物物理方法),我们将获得:(1)与内心层的相关型号的详细机械理解,(1)如何在内部集中界面,(2)在内部集中阶层(2)(2)(2)(2)(2)(2)(2)双向定向和准确的隔离,以及(3)如何通过多代保持中心粒身份。这项工作建立在我们最近获得的令人兴奋的结构/分子知识的基础上,这些结构/分子知识导致了意外的见解和新问题,并将利用我们最近产生的分子试剂电池。我们工作的结果将为丝粒介导的染色体隔离控制提供前所未有的细节,并使我们能够建立一个用于无错误的染色体隔离的综合机械模型,这一过程已经使研究人员迷人了一个多世纪。
姓名 领域 组织 Byun, Ilkwon Cryo-Semi, QIP-QC 韩国首尔国立大学 Cuthbert, Michael Cryo, QIP 英国国家量子计算中心 DeBenedictis, Erik QIP-QC Zettaflops,美国 Delfanazari, Kaveh QIP-QC 英国格拉斯哥大学 Fagaly, Robert L. SCE-App Tristan Technologies(已退休),美国 Fagas, Giorgios QIP 爱尔兰廷德尔国家研究所 Febvre, Pascal SCE-Fab 法国萨瓦大学勃朗峰分校 Filippov, Timur SCE-Logic HYPRES,美国 Fourie, Coenrad SCE-EDA 南非斯泰伦博斯大学 Frank, Michael SCE-Logic, -Roadmap 美国桑迪亚国家实验室 Gupta, Deep SCE, Cryo-Semi SEACORP,美国 Herr, Anna SCE IMEC,比利时 Herr, Quentin SCE IMEC,美国Holmes, D. Scott [主席] SCE Booz Allen Hamilton,美国 Humble, Travis QIP-QC 橡树岭国家实验室,美国 Leese de Escobar, Anna SCE-App, -Bench Technology Vector Inc.,美国 Min, Dongmoon Cryo-Semi,QIP-QC 首尔国立大学,韩国 Mueller, Peter QIP-QC IBM 苏黎世,瑞士 Mukhanov, Oleg QIP-QC, SCE-Logic SEEQC,美国 Nemoto, Kae QIP 国家信息研究所 (NII),日本 Papa Rao, Satyavolu SCE-Fab,QIP 纽约州立大学理工学院,美国 Pelucchi, Emanuele QIP-QC 廷德尔国家研究所,爱尔兰 Plourde, Britton QIP, SCE 雪城大学,美国 Soloviev, Igor SCE 罗蒙诺索夫莫斯科国立大学,俄罗斯 Tzimpragos, George SCE-Logic, -Metrics 密歇根大学,美国 Van Horn, Andrew QIP-QC 杜克大学美国大学 Weides, Martin SCE, QIP 英国格拉斯哥大学 Yoshikawa, Noboyuki SCE-Logic, -Bench 日本横滨国立大学 You, Lixing SCE 中国科学院上海微系统与信息技术研究所 该团队感谢 Paolo Gargini、An Chen、Elie Track 和 IEEE 超导委员会对开发 CEQIP IFT 的鼓励和支持。我们还要感谢 Linda Wilson 提供的行政帮助和支持。2023 年报告的贡献者包括外部系统连接 (OSC) IFT 的 Carlos Augusto。