。此外,由于尿液可以在家中自我收集,因此这种远程标本的收集能力可以帮助达到服务不足的人群,并在人群范围内实现更有效的癌症筛查。尽管TR-CTDNA方法具有巨大的潜力,但与血液ctDNA相比,关于Tr-CTDNA检测效率的报道混杂(3-7)。对TR-CTDNA进行分析的潜在至关重要因素是知道尿液中存在的Tr-ctDNA片段的长度,因为这会影响测定设计,以在Tr-CTDNA检测中进行最佳灵敏度。迄今为止,已经有关于Tr-ctDNA片段长度的对比报告。基于PCR的TR-CTDNA研究,当使用缩短大于60 bp(4、8、9)时,在检测方面已显示出更大的成功,这是两项最近的下一代测序(NGS)研究(NGS)研究,该研究专门针对TR-CTDNA,表明中间长度的中间长度为112 bp(10)或101 bp(11)或较高的研究表明,与一项较高的comptions(相比),与一项较高的表现相结合。控件(11)。报告的NGS结果的限制是使用的特定库制备方法(例如,双链DNA [dsDNA]库制备方案,基于杂交的ctDNA片段捕获)容易偏向于恢复较短的片段,尤其是超级片段,尤其是超级片段(尤其是<50 bp)(12)(12)。为了检验这一假设,我们利用了能够捕获最小片段的单链NGS方法来开发TR-CTDNA大小的更完整的曲线。鉴于在非癌症环境中对无细胞的无细胞DNA(CFDNA)的研究(例如,孕妇尿液中的胎儿DNA或结核病患者的结核分枝杆菌DNA的胎儿DNA(13,14)(13,14)报道了跨性别的CFDNA是超消除的(<50 bp),我们可以彻底crunder(<50 bp) - 均可能是癌症。尿液。如结果所示,我们的数据表明TR-CTDNA是超短症(<50 bp),可在多种非动物癌症类型中检测到。除了单链DNA(SSDNA)NGS研究外,我们开发了一种基于液滴数字PCR(基于DDPCR)的测定法,以测量尿液中的TR-CTDNA,该测量提供了绝对的量化,更高的精度,更高的精度和更高的吞吐量。我们设计了此测定方法来研究患有HPV +口咽鳞状细胞癌(OPSCC)的患者。在此类患者中,HPV DNA序列在血液循环中以CTDNA为单位,我们假设可以通过DDPCR在尿液中检测到肾脏肾小球屏障的ctDNA片段。HPV ctDNA代表了TR-CTDNA的DDPCR分析开发的理想靶标,因为(a)90%的HPV + OPSCC患者共享单个HPV亚型HPV16的序列,因此,单个HPV16 TR-CTDNA分析可以覆盖大型患者; (b)由于HPV是一个非人类序列,因此预计没有HPV +癌症患者的“背景”信号将很低; (c)HPV16可以在肿瘤基因组内的多个位点整合,从而导致每个肿瘤基因组的信号更高。因此,我们试图开发一种能够从HPV + OPSCC患者的尿液中检测到尿液中超常用的HPV16 TR-CTDNA片段的第一代DDPCR分析。值得注意的是,与HPV +宫颈癌的设置不同,可以将肿瘤DNA直接沉积到尿液中,HPV16 HPV16信号在HPV + OPSCC患者的尿液中必然是跨性别的。我们将此测定(42 bp扩增子)与常规长度测定(77 bp amplicon)进行了比较,发现靶向超短片段对于可靠的尿液TR-CTDNA检测至关重要。利用超短扩增子测定法,我们在HPV + OPSCC患者的尿液中获得了TR-CTDNA检测,这些尿液与匹配的血浆CTDNA的结果一致。此外,使用小病例系列中的纵向尿液样品,我们展示了概念证明,用于早期发现癌症复发。因此,我们的结果表明,通过靶向超短DNA片段,TR-CTDNA成为HPV + OPSCC检测的可行方法,并且有可能在治疗后进行癌症复发监测。
摘要背景缺乏高质量的下一代测序(NGS)参考材料(RM)阻碍了中国液体活检的临床使用。目的本研究旨在在非小细胞肺癌(NSCLC)相关的KIT肺癌(NSCLC)肉瘤病毒癌(KRAS)/神经母细胞瘤ras Oncogene(NRAS)/epidermal brfe(egigermal raf)(egigermal raf)(egigermal raf)(e-graf)brf)(e-eg ki tipp)(e-eg ki tipp raf)(e-graf)(egigermal raf)(e-eg kin frffipp raf) 目的旨在开发全国RM外部质量评估和绩效评估。 )/间质 - 上皮过渡因子(MET)遗传测定,使用血浆循环肿瘤DNA(CTDNA)。 方法由NGS检测到并通过Sanger测序进行验证以建立RM。 细胞系基因组DNA被剪切,并以10%浓度刺激基底等离子体CfDNA。 然后,通过四个测序平台确定校准精度。 平均值被以基础等离子体为RM面板的0.1%,0.1%,0.3%,1%和3%的浓度。 然后,邀请五名制造商评估RM面板的性能。 结果选择了20个具有23个临床重要突变的细胞系,包括KRAS中的六个突变,NRAS中的两个突变,三个突变,在BRAF中进行了3个突变,在磷脂酰肌醇-4,5-双磷酸3-激酶3-激酶催化亚基α(PIK3CA)中,六个突变,其中6个突变,其中有6个突变,pik3CA(PIK3CA),六个中的EGFR中的6个EGFR,EGFR,一个EGFR增益(4-5-5概率)和一份(2-5)。 RM面板由87个样本组成,包括以四个浓度(0.1%,0.3%,1%和3%),一个MET增益,一个EGFR增益和一种野生型的21个突变。目的旨在开发全国RM外部质量评估和绩效评估。 )/间质 - 上皮过渡因子(MET)遗传测定,使用血浆循环肿瘤DNA(CTDNA)。 方法由NGS检测到并通过Sanger测序进行验证以建立RM。 细胞系基因组DNA被剪切,并以10%浓度刺激基底等离子体CfDNA。 然后,通过四个测序平台确定校准精度。 平均值被以基础等离子体为RM面板的0.1%,0.1%,0.3%,1%和3%的浓度。 然后,邀请五名制造商评估RM面板的性能。 结果选择了20个具有23个临床重要突变的细胞系,包括KRAS中的六个突变,NRAS中的两个突变,三个突变,在BRAF中进行了3个突变,在磷脂酰肌醇-4,5-双磷酸3-激酶3-激酶催化亚基α(PIK3CA)中,六个突变,其中6个突变,其中有6个突变,pik3CA(PIK3CA),六个中的EGFR中的6个EGFR,EGFR,一个EGFR增益(4-5-5概率)和一份(2-5)。 RM面板由87个样本组成,包括以四个浓度(0.1%,0.3%,1%和3%),一个MET增益,一个EGFR增益和一种野生型的21个突变。目的旨在开发全国RM外部质量评估和绩效评估。 )/间质 - 上皮过渡因子(MET)遗传测定,使用血浆循环肿瘤DNA(CTDNA)。 方法由NGS检测到并通过Sanger测序进行验证以建立RM。 细胞系基因组DNA被剪切,并以10%浓度刺激基底等离子体CfDNA。 然后,通过四个测序平台确定校准精度。 平均值被以基础等离子体为RM面板的0.1%,0.1%,0.3%,1%和3%的浓度。 然后,邀请五名制造商评估RM面板的性能。 结果选择了20个具有23个临床重要突变的细胞系,包括KRAS中的六个突变,NRAS中的两个突变,三个突变,在BRAF中进行了3个突变,在磷脂酰肌醇-4,5-双磷酸3-激酶3-激酶催化亚基α(PIK3CA)中,六个突变,其中6个突变,其中有6个突变,pik3CA(PIK3CA),六个中的EGFR中的6个EGFR,EGFR,一个EGFR增益(4-5-5概率)和一份(2-5)。 RM面板由87个样本组成,包括以四个浓度(0.1%,0.3%,1%和3%),一个MET增益,一个EGFR增益和一种野生型的21个突变。目的旨在开发全国RM外部质量评估和绩效评估。 )/间质 - 上皮过渡因子(MET)遗传测定,使用血浆循环肿瘤DNA(CTDNA)。方法由NGS检测到并通过Sanger测序进行验证以建立RM。细胞系基因组DNA被剪切,并以10%浓度刺激基底等离子体CfDNA。然后,通过四个测序平台确定校准精度。平均值被以基础等离子体为RM面板的0.1%,0.1%,0.3%,1%和3%的浓度。然后,邀请五名制造商评估RM面板的性能。结果选择了20个具有23个临床重要突变的细胞系,包括KRAS中的六个突变,NRAS中的两个突变,三个突变,在BRAF中进行了3个突变,在磷脂酰肌醇-4,5-双磷酸3-激酶3-激酶催化亚基α(PIK3CA)中,六个突变,其中6个突变,其中有6个突变,pik3CA(PIK3CA),六个中的EGFR中的6个EGFR,EGFR,一个EGFR增益(4-5-5概率)和一份(2-5)。RM面板由87个样本组成,包括以四个浓度(0.1%,0.3%,1%和3%),一个MET增益,一个EGFR增益和一种野生型的21个突变。所有五家公司的3%,1%和0.3%样本的检测率为100%。对于0.1%的浓度,15个样本的结果不一致,但至少有3家公司对每个突变都有正确的结果。为等离子ctDNA的KRAS / NRAS / EGFR / BRAF / MET突变面板的结论RM开发了,这对于对独立实验室的性能的质量控制至关重要。
plasmaMATCH 由英国癌症研究中心 (CRUK/15/010, C30746/A19505) 资助,并得到了阿斯利康、Puma Biotechnology、Guardant Health 和 Bio-Rad 的额外支持。衷心感谢所有试验参与者及其家人。我们感谢 Breast Cancer Now 为这项工作提供资金,这是对伦敦癌症研究所托比罗宾斯乳腺癌研究中心的计划资助的一部分。还要感谢参与中心的工作人员、ICR-CTSU 试验团队、中央实验室的工作人员以及乳腺癌现在托比罗宾斯研究中心生物信息学核心设施的 Syed Haider 及其团队提供的生物信息学支持。plasmaMATCH 由癌症研究所和皇家马斯登国家医疗服务基金会共同赞助。ICR-CTSU 由英国癌症研究中心核心拨款 (C1491/A25351) 资助。 plasmaMATCH 得到了英国曼彻斯特克里斯蒂医院的国家卫生研究院 (NIHR) 曼彻斯特临床研究中心、英国癌症研究中心剑桥中心、剑桥 NIHR 生物医学研究中心和英国剑桥剑桥实验癌症医学中心的支持。plasmAATCH 在英格兰的参与点得到了 NIHR 临床研究网络的支持,在苏格兰得到了首席科学家办公室的支持,在威尔士得到了威尔士健康与护理研究中心的支持。本研究是由皇家马斯登国家医疗服务基金会 NIHR 生物医学研究中心和英国伦敦癌症研究所支持的独立研究。所表达的观点为作者的观点,不一定代表 NIHR 或卫生与社会保健部的观点。作者还感谢 plasmaMATCH 试验管理小组、独立数据监测委员会和试验指导委员会中对试验进行监督的过去和现在的同事。
摘要组织肿瘤突变负担(TTMB)的计算以有助于癌症治疗选择。高TTMB预测非小细胞肺癌患者对免疫疗法的有利反应。 据报道,来自循环肿瘤DNA的血液TMB(BTMB)具有相似的预测能力,并已被提议作为TTMB的替代方案。 在许多研究中,不仅TTMB和BTMB并不一致,而且正如我们小组先前报道的那样,预测结果相互矛盾。 这意味着BTMB不是TTMB的替代品,而是可能包含肿瘤异质性的复合指数。 在这里,我们提供了TMB的预测能力的详细概述,讨论与TMB一起使用肿瘤异质性来预测治疗反应的使用,并回顾了几种肿瘤异质性评估的方法。 此外,我们提出了一种假设方法来估计肿瘤异质性并触及其临床意义。高TTMB预测非小细胞肺癌患者对免疫疗法的有利反应。据报道,来自循环肿瘤DNA的血液TMB(BTMB)具有相似的预测能力,并已被提议作为TTMB的替代方案。在许多研究中,不仅TTMB和BTMB并不一致,而且正如我们小组先前报道的那样,预测结果相互矛盾。这意味着BTMB不是TTMB的替代品,而是可能包含肿瘤异质性的复合指数。在这里,我们提供了TMB的预测能力的详细概述,讨论与TMB一起使用肿瘤异质性来预测治疗反应的使用,并回顾了几种肿瘤异质性评估的方法。此外,我们提出了一种假设方法来估计肿瘤异质性并触及其临床意义。
我们感谢参加TRESR和/或ATTACC的患者的无私和愿意参加临床研究。我们感谢整个Camonsertib研究团队对TRESR RP-3500-01和ATTACC RP-3500-03的贡献。我们还要感谢我们的合作伙伴实验室,《守护者》(Guardant Health)为这项研究提供的技术帮助和数据生成。我们感谢全球主要公司Onyx在排版和准备海报方面的支持。E.R是一名研究研究者。 J.S.R-F是一名研究研究员;并收到了高盛,Paige.ai,Repare Therapeutics和Persantis的咨询费;是Volition RX,Paige.ai,Repare Therapeutics,Personis和Bain Capital的科学咨询委员会的成员;是Grupo Oncoclinicas董事会成员;并且是Roche Tissue Diagnostics,Ventana Medical Systems,Astrazeneca,Daiichi Sankyo和Merck Sharp&Dohme的科学咨询委员会的临时成员。 B.A.C已通过阿斯利康,Abbvie,Actaute Therapeutics,Astellas,Bayer,Draginfly Therapeutics,Pfizer和Repare and then the Pepepeutics获得了Astrazeneca,Actaute Therapeutics,Actaute Therapeutics,Actaute Therapeutics,Actautics Therapeutics,并获得了研究资金。 s.l已从默克,阿斯利康,雷金伦,罗氏,雷神治疗,葛兰素史克林和西根获得了其机构的赠款或合同; Novocure,Merck,Astrazeneca,Glaxosmithkline,Eisai和Shattuck Labs获得的咨询费;付款或荣誉奖,以进行讲座,演讲,发言人的局,手稿写作或来自阿斯利康,葛兰素史克林和Eisai/Merck的教育活动;并参与Astrazeneca的数据安全监控委员会或顾问委员会。 A.Y. ,E.L。 ,M.CA.E.R是一名研究研究者。J.S.R-F是一名研究研究员;并收到了高盛,Paige.ai,Repare Therapeutics和Persantis的咨询费;是Volition RX,Paige.ai,Repare Therapeutics,Personis和Bain Capital的科学咨询委员会的成员;是Grupo Oncoclinicas董事会成员;并且是Roche Tissue Diagnostics,Ventana Medical Systems,Astrazeneca,Daiichi Sankyo和Merck Sharp&Dohme的科学咨询委员会的临时成员。B.A.C已通过阿斯利康,Abbvie,Actaute Therapeutics,Astellas,Bayer,Draginfly Therapeutics,Pfizer和Repare and then the Pepepeutics获得了Astrazeneca,Actaute Therapeutics,Actaute Therapeutics,Actaute Therapeutics,Actautics Therapeutics,并获得了研究资金。s.l已从默克,阿斯利康,雷金伦,罗氏,雷神治疗,葛兰素史克林和西根获得了其机构的赠款或合同; Novocure,Merck,Astrazeneca,Glaxosmithkline,Eisai和Shattuck Labs获得的咨询费;付款或荣誉奖,以进行讲座,演讲,发言人的局,手稿写作或来自阿斯利康,葛兰素史克林和Eisai/Merck的教育活动;并参与Astrazeneca的数据安全监控委员会或顾问委员会。A.Y. ,E.L。 ,M.CA.A.Y.,E.L。 ,M.CA.,E.L。 ,M.CA.M.CE已获得国家癌症研究所(NCI)指导的临床科学家研究职业发展奖;拜耳制药,DAVA肿瘤学,Taiho Pharmaceuticals,Seattle Genetics,Macrogenics和Daiichi Sankyo的个人费用;并持有Parthenon Therapeutics的股票期权。B.H已从Eisai获得酬金;曾在Amgen担任咨询或咨询角色;并从:Repare Therapeutics(Inst),Ideaya Biosciences(Inst),Amgen(Inst),Revolution Medicines(Inst),Astellas Pharma(Inst)获得研究资金。和S.Z.是监护人的雇员。D.U. ,I.K。 ,I.M.S。 ,J.D.S,J.Y,K.F,M.K,P.N,S.S,V.R和Y.X是Repare的员工,可能会持有股票和/或股票期权。 联系人:Ian Silverman(Isilverman@reparerx.com)缩写D.U.,I.K。 ,I.M.S。 ,J.D.S,J.Y,K.F,M.K,P.N,S.S,V.R和Y.X是Repare的员工,可能会持有股票和/或股票期权。 联系人:Ian Silverman(Isilverman@reparerx.com)缩写,I.K。,I.M.S。 ,J.D.S,J.Y,K.F,M.K,P.N,S.S,V.R和Y.X是Repare的员工,可能会持有股票和/或股票期权。 联系人:Ian Silverman(Isilverman@reparerx.com)缩写,I.M.S。 ,J.D.S,J.Y,K.F,M.K,P.N,S.S,V.R和Y.X是Repare的员工,可能会持有股票和/或股票期权。联系人:Ian Silverman(Isilverman@reparerx.com)缩写
结果•从tempus多模式数据库中,我们回顾了带有双组织(tempus XT,648个基因)和ctDNA测试的RCC的患者(PTS)的去识别的NGS数据(PTS)(tempus XF,105个基因)•PTS•PTS clunicatiental and clintical Spellicatient contricatient•colletical Spellicatient•colletical contericatients•另一种天数•另一位 +90天 +/-90天,评估了简短变体(PSSV)和拷贝数变体[(放大和删除,两个拷贝数损失(CNL)]。•一致性分析仅限于在ctDNA面板上测试的105个基因,并进一步限于短变体,除了放大和XF和XT检测到的CNL外。
结果•从tempus多模式数据库中,我们回顾了带有双组织(tempus XT,648个基因)和ctDNA测试的RCC的患者(PTS)的去识别的NGS数据(PTS)(tempus XF,105个基因)•cluntericatiental xf seletister•clunical clinistic and clunical Spactical contricatient contricatient•colletical contricatiencatient•colletical contericatience +colleticatience +contericatience +conted +colletical +seles +90天。评估了简短变体(PSSV)和拷贝数变体[(放大和删除,两个拷贝数损失(CNL)]。•一致性分析仅限于在ctDNA面板上测试的105个基因,并进一步限于短变体,除了放大和XF和XT检测到的CNL外。
•使用ctDNA预测黑色素瘤主要研究者对病情疗法的反应:Jessica Cintolo-Gonzalez,MD Lay摘要:黑色素瘤已通过FDA批准的Talimogenelaherparepepvec®(Imlylylylylylylyparpvectecte)通过Incoption(talimygeen)(talimogene laherlyagepvec)进行治疗。这包括每2-3周注射一次。有时由于肿瘤的进展或完整的临床反应而导致的不连续治疗是一个非常明确的决定,导致没有进一步的注射病变,但如果随着时间的流逝,病变的稳定性稳定时,停止注射的决定可能是具有挑战性的。这可能会发生,因为身体检查或射线照相发现并不总是表明存在可行的肿瘤。使用循环肿瘤DNA(CTDNA)监测血液中肿瘤的存在,越来越多地用作预测疾病的存在和对癌症疗法的反应的一种方式。因此,我们认为,测试商业上可用的CTDNA测试(Signateratm),因为它能够反映用TVEC治疗的黑色素瘤患者的存在/不存在可行肿瘤的能力,可以将该平台识别为有价值的工具,可以为这些具有挑战性的治疗决策提供信息。• Determining Patient Outcomes in the Treatment of Mesothelioma with Proteomic Fingerprints Principal Investigators: Brian Cunniff, PhD & Christopher Landry, PhD Lay Summary: The goal of this study is to use proteomics to identify patterns of protein up- and down-regulation in malignant pleural effusion (MPE) fluid of patients diagnosed with mesothelioma.硫代(RSO-021)是一种新的治疗方法,该治疗方法是通过直接给药到胸膜腔(NCT05278975)对1期Mitope试验进行了测试。鉴于间皮瘤从诊断点开始迅速发展,并且在一线和二线治疗后,在早期阶段制定有效的治疗策略很重要。目前,缺乏对影响患者对RSO-021反应的因素的理解。• Impact of environmental toxins on BRPF1 bromodomain acetylated lysine recognition in leukemogenesis Principal Investigator: Karen C. Glass, PhD Lay Summary: Leukemia is a cancer of the blood caused by both genetic and environmental factors that cause the bone marrow cells to grow too rapidly, which interferes with the function of normal red blood cells in transporting oxygen around our body.暴露于有毒物质(即苯和烟草烟雾),农药甚至是土壤中的镍都是患白血病的危险因素。也已知它们会改变我们细胞中对于调节细胞生长很重要的化学信号传导模式。我们建议开发新方法,以识别和表征与这些化学信号结合的蛋白质的相互作用,以确定环境毒素如何改变结合相互作用并促进白血病的发展。