摘要 虽然斑马鱼正在成为研究人类疾病的新模型系统,但仍然缺乏高效产生精确点突变的有效方法。在这里,我们展示了碱基编辑器可以高效地产生 C 到 T 的点突变,而不会产生其他不必要的靶向突变。此外,我们建立了一种识别 NAA 原型间隔区相邻基序的新编辑器变体,扩展了斑马鱼的碱基编辑可能性。利用这些方法,我们首先在 ctnnb1 基因中产生了碱基变化,模仿已知会导致内源性 Wnt 信号组成性激活的人类基因致癌突变。此外,我们精确靶向了包括 cbl 在内的几种癌症相关基因。利用最后一个目标,我们创建了一种新的斑马鱼侏儒症模型。我们的研究结果共同扩展了斑马鱼作为模型系统的潜力,为内源性调节细胞信号通路和生成人类遗传疾病相关突变的精确模型提供了新方法。
不同的KRAS变体如何影响体内肿瘤的启动和进展。我们假设KRAS G12D或KRAS G12V突变启动肿瘤形成的能力取决于上下文。AMHR2-CRE小鼠在组织中发育到输卵管,子宫和卵巢中的组织中表达CRE重组酶。我们使用这些小鼠来有条件地表达KRAS G12V/ +或KRAS G12D/ +突变。具有基因型AMHR2-CRE PTEN(FL/ FL)KRAS G12D/ +(G12D小鼠)的小鼠具有异常的卵泡结构,并在18周内开发了低级浆液卵巢癌,其渗透率为100%。相比之下,具有基因型AMHR2-CRE PTEN(FL/ FL)KRAS G12V/ +(G12V小鼠)的小鼠具有正常的卵泡结构,其中约90%的子宫肿瘤具有类似于平滑肌瘤和Leiomyosarcomarcoma的组织学特征多样的组织学特征。颗粒细胞肿瘤也在G12V小鼠中发展。 使用RNA测序和反相蛋白阵列分析鉴定出G12D和G12V小鼠子宫组织中细胞信号途径的差异。 我们发现CTNNB1,IL1A,IL1B,TNF,TGFB1,APP和IL6在G12V小鼠中的活性高于G12D小鼠。 这些小鼠模型将有助于研究由KRAS G12V/ +或KRAS G12D/ +突变驱动的信号传导途径的差异,以帮助开发针对特定的KRAS突变变体的靶向疗法。 由KRAS G12V/ +突变驱动的我们的平滑肌瘤模型也将有助于解密从平滑肌瘤到平滑肌肉瘤的恶性发展。颗粒细胞肿瘤也在G12V小鼠中发展。使用RNA测序和反相蛋白阵列分析鉴定出G12D和G12V小鼠子宫组织中细胞信号途径的差异。我们发现CTNNB1,IL1A,IL1B,TNF,TGFB1,APP和IL6在G12V小鼠中的活性高于G12D小鼠。这些小鼠模型将有助于研究由KRAS G12V/ +或KRAS G12D/ +突变驱动的信号传导途径的差异,以帮助开发针对特定的KRAS突变变体的靶向疗法。由KRAS G12V/ +突变驱动的我们的平滑肌瘤模型也将有助于解密从平滑肌瘤到平滑肌肉瘤的恶性发展。
尽管根据对信号传导回路的最新理解进行了联合靶向治疗,但 BRAF V600E 突变仍会导致转移性结直肠癌 (CRC) 预后不良。为了确定 BRAF–MEK–EGFR 共靶向诱导的平行耐药机制,我们使用了高通量激酶活性映射平台。在这里,我们表明,在靶向抑制 BRAF ± EGFR 后,SRC 激酶在 BRAF V600E CRC 中被系统地激活,并且 SRC 与 BRAF ± EGFR 的协同靶向可提高体外和体内治疗效果。SRC 通过 β-catenin (CTNNB1) 诱导转录重编程,独立于 ERK 信号传导驱动对 BRAF ± EGFR 靶向治疗的耐药性。EGFR 独立的 SRC 激酶补偿性激活由自分泌前列腺素 E 2 环介导,可以用环氧合酶-2 (COX2) 抑制剂阻断。 COX2 与 BRAF + EGFR 的共同靶向作用可促进患者来源的肿瘤异种移植模型中肿瘤生长的持久抑制。COX2 抑制代表了一种药物再利用策略,可克服 BRAF V600E CRC 的治疗耐药性。
ABL1、ABL2、AKT1、ALK、APC、AR、ARAF、ARID1A、ARID1B、ATM、ATR、ATRX、BAP1、BARD1、BRAF、BRCA1、BRCA2、BRIP1、C11orf65、CCND1、CDH1、CDK12、CDK4、CDKN2A、CDX2、CHEK1、CHEK2、CSF1R、CTNNB1、DDR2、EGFR、ERBB2、ERBB3、ERBB4、ERCC2、ESR1、EZH2、FANCL、FBXW7、FGFR1、FGFR2、FGFR3、FGFR4、FLT3、FOXA1、FOXL2、GATA3、GNA11、GNAQ、GNAS、HNF1A、HRAS、IDH1、IDH2、INPP4B、 JAK1、JAK2、JAK3、KDM5C、KDM6A、KEAP1、KIT、KRAS、MAP2K1、MAP2K2、MAPK1、MET(外显子 14 跳跃)突变)、MLH1、MPL、MSH2、MSH6、MTOR、MUTYH、MYC、MYCN、MYD88、NF1、NF2、NOTCH1、NPM1、NRAS、NTRK1、NTRK3、PALB2、PBRM1、PDGFRA、PIK3CA、PMS2、POLD1、POLE、PPP2R2A、PTCH1、PTEN、PTPN11、RAD51B、RAD51C、RAD51D、RAD54L、RAF1、RB1、RET、RHEB、RHOA、RIT1、ROS1、SETD2、SF3B1、 SMAD4、SMARCB1、SMO、SPOP、SRC、STK11、TERT、TP53、TSC1、TSC2、VHL
f i g u r e 1通过癌症类型的晚期癌症患者的比例,他们有资格获得与生物标志物相关的治疗或由生物标志物指导的临床试验。改编并从Normanno等人,2022年进行更新。9基于AACR Genie Real -World基因组数据集的内部分析,版本8版(AACR Project Genie Consortium,2017年10)。基于2015 - 2017年UK Cancer Research的癌症发病率。 由英国癌症研究和国家癌症研究所的监视,流行病学和最终结果(SEER)计划和其他来源的晚期疾病患者的比例。 基于FDA批准的批准治疗。 Clinical trial biomarkers (cancer types are excluded where drugs have already been approved): ERBB2 mutation and amplification (excluding breast, NSCLC, and stomach), KRAS G12C (excluding NSCLC), CCNE1 amplification, STK11 (NSCLC only), MET amplification, PALB2 (breast, pancreas, ovary), ARID1A, EGFR (excluding NSCLC), IHD1/2 (excluding biliary), PIK3CA (excluding breast), AKT1/2/3 (excluding breast), CDK12, ERBB3/4 amplification and mutation, FGFR1 fusion and mutation, ATM (excluding prostate), BAP1, CTNNB1, NF1/2和PTCH1。 AACR表示美国癌症研究协会;中枢神经系统,中枢神经系统;美国食品和药物管理局FDA; Genie,基因组学证据肿瘤信息交流; NSCLC,Nonsmall细胞肺癌; SCLC,小细胞肺癌。基于2015 - 2017年UK Cancer Research的癌症发病率。由英国癌症研究和国家癌症研究所的监视,流行病学和最终结果(SEER)计划和其他来源的晚期疾病患者的比例。基于FDA批准的批准治疗。Clinical trial biomarkers (cancer types are excluded where drugs have already been approved): ERBB2 mutation and amplification (excluding breast, NSCLC, and stomach), KRAS G12C (excluding NSCLC), CCNE1 amplification, STK11 (NSCLC only), MET amplification, PALB2 (breast, pancreas, ovary), ARID1A, EGFR (excluding NSCLC), IHD1/2 (excluding biliary), PIK3CA (excluding breast), AKT1/2/3 (excluding breast), CDK12, ERBB3/4 amplification and mutation, FGFR1 fusion and mutation, ATM (excluding prostate), BAP1, CTNNB1, NF1/2和PTCH1。AACR表示美国癌症研究协会;中枢神经系统,中枢神经系统;美国食品和药物管理局FDA; Genie,基因组学证据肿瘤信息交流; NSCLC,Nonsmall细胞肺癌; SCLC,小细胞肺癌。AACR表示美国癌症研究协会;中枢神经系统,中枢神经系统;美国食品和药物管理局FDA; Genie,基因组学证据肿瘤信息交流; NSCLC,Nonsmall细胞肺癌; SCLC,小细胞肺癌。
口腔癌负责世界各地的许多死亡,因为它导致了由于治疗失败而导致的复发和转移。常规处理破坏了分化的肿瘤细胞,但肿瘤干细胞种群具有抗性并重新填充肿瘤。Wnt/β-catenin信号传导参与肿瘤干细胞的维持,生存,自我更新和分化及其信号传导,可以通过表观遗传修饰来调节。该项目的目的是确定控制Wnt/β-catenin信号通路及其靶标涉及的表观遗传变化,并研究道路参与肿瘤干细胞积累和口服癌细胞系的化学性。研究了三种野生口服癌菌株(Cal27 wt; SCC9 WT; SCC25 wt)和顺铂耐药性(Cal27 CISR; SCC9 CISR; SCC25 CISR)及其肿瘤干细胞群(CTT+)和非肿瘤干(CTT-temor(CTTT-))。QPCR分析,以评估基因表达和蛋白质印迹以进行蛋白质水平评估。通过细胞可行性测试确定IC50剂量的抑制剂。球体流量和鉴定的CTT+的形成细胞术。染色质免疫沉淀以识别道路的表观遗传调节。Xenoenxe检验用于研究Wnt/β-catenin途径作为治疗靶标的潜力。我们观察到表观遗传机调节基因的表达增加,例如BRD7,EZH2,KDM4C和MLL1和CTNNB1基因,该基因在抗顺铂菌株中编码β-catenin的ctNNB1基因。Wnt/β-catenin途径基因(如APC和GSK3β)在3种化学主义菌株中减少,下游FGF18和MMP7基因增加。CTT+的种群表现出参与组蛋白甲基化的基因的更大表达。β-catenin和甲基化的H3K27ME3和H3K9ME2组蛋白在顺铂抗性菌株和CTT+中也增加了。EZH2(UNC1999)和β-catenin抑制剂(ICG-001和FH535)的抑制剂降低了CTT+的群体,并降低了化学谱系中CTT+的群体,并降低了β-catenin和Ezh2蛋白。H3K27ME3用抑制剂处理后也降低了它。UNC1999治疗增加了上游APC和GSK3β基因的表达,并且对ICG-001,FH535和UNC1999的处理可有效降低CTT+中下游MMP7基因。FH535显示出降低CTT+种群的有效性,尤其是与顺铂和UNC1999结合使用时。β-catenin抑制剂单一疗法或与顺铂和UNC1999结合降低了CTT+躯干表型。在肿瘤组织中施用FH535,FH535+顺铂和UNC1999+FH535之后,肿瘤生长降低,肿瘤β-catenin,Ezh2,H3K27Me3和肿瘤干细胞标记肿瘤降低。通过化学谱系和CTT+CTT+种群中的染色质免疫沉淀,我们确定EZH2与该地区
其原因是缺乏有效且可耐受的治疗选择,以及晚期疾病时症状不典型 [2]。卵巢癌包含多种类型的癌症,包括上皮性卵巢癌、生殖细胞卵巢肿瘤、性索间质肿瘤、小细胞癌和卵巢癌肉瘤。上皮性卵巢癌约占所有卵巢癌的 85%–90% [3],且具有多种亚型。其中,高级别浆液性癌 (HGSC) 最为常见,占卵巢癌的 70% 以上 [4]。上皮性卵巢癌可分为两种主要类型:1 型和 2 型。1 型上皮性卵巢癌包括低级别浆液性癌、粘液癌、子宫内膜样癌和透明细胞癌,这些癌的侵袭性较低,因为它们倾向于局部生长和晚期转移 [5]。 2 型上皮性卵巢癌包括高级别浆液性癌、癌肉瘤和未分化癌,这些癌具有生物侵袭性,通常出现在疾病晚期,小体积原发性病变转移的风险较高 [6]。1 型肿瘤的特征是 ARID1A、BRAF、CTNNB1、KRAS、PIK3CA 和 PTEN 的基因组变异,而 2 型肿瘤的特征是 TP53 和 BRCA 的基因组变异 [7]。
肝细胞癌(HCC)是上皮起源的癌。虽然有几个因素,但特定的遗传和表观遗传景观定义了HCC的起始和进展。遗传突变,尤其是错义突变,通常是包括HCC在内的癌症发作的预测指标。具体而言,与端粒酶,TP53和β-catenin(CTNNB1)相关的突变是HCC中最常见的三个最常见突变基因之一。这些遗传突变定义了HCC的特定亚型,在miRNA表达和相互作用组方面表现出特定的表观遗传表达模式。在当前的研究中,我们在三种不同的细胞系Hepg2,Huh7和QGY7703之间对表现出不同的突变模式进行了多个miRNA的差异表达分析。这是第一个基于miRNA表达的HCC细胞系的研究。我们还确定了与显着差异表达的miRNA相关的富集途径,生物信息上预测了它们的靶标,并表征了相互作用。此外,我们根据癌症样品的突变状态对可公开可用数据集的小型RNA测序数据进行了分类,并计算了与体外数据相似的MiRNA的重叠,并预测了顶级HUB基因及其相关途径,并使用集成的BioEnformic方法预测了他们相关的途径。
图1基于转录组信息的癌细胞调用。(a)样品的解剖位置和突变模式。c,cecum; a,上升的结肠; D,下结肠; S,Sigmoid; R,直肠。突变(在括号中)A:APC,B:BRAF,C:CTNNB1,K:KRAS,P:TP53。(b)所有73,294个细胞的UMAP,由三种主要细胞类型室染色:上皮(蓝色),免疫(橙色)和基质细胞(绿色)。(c,d,f)仅上皮细胞的umaps。(c)颜色代码按样本原点和微卫星状态。癌症样本(MSI),红色;癌症样本(MSS),黄色;正常样本,灰色。(d)ICMS分配的癌症样品颜色代码; ICMS2(黄色),ICMS3(粉红色)或正常(蓝色),正常样品(未评分,灰色)。(f)癌症样品细胞的颜色代码。拷贝数状态异常(CNA; Orange),正常(CNN; Blue)或不适用(Na; Purple)当样本中的克隆不可分割时,样品(未得分,灰色)。(e,g)分别通过癌症样本分别汇总了ICMS和地震信息。(H)量化ICMS和UnderCNV之间的一致性呼吁,作为一个不适的情节,由患者进行了颜色编码,如所示。
背景:颅咽管瘤 (CP) 与关键神经血管结构的接近可导致一系列神经和内分泌并发症,从而给手术治疗带来困难。在本综述中,我们研究了与 CP 有关的分子和遗传标记、它们在致瘤途径中的参与以及它们对 CP 预后和治疗的影响。方法:我们对与 CP 有关的相关文章、临床试验和分子摘要进行了重点回顾。结果:遗传和免疫标记在不同类型的 CP 中表现出不同的表达。BRAF 与乳头状 CP (pCP) 的肿瘤发生有关,而 CTNNB1 和 EGFR 在釉质瘤性 CP (aCP) 中经常过度表达,VEGF 在 aCP 和复发性 CP 中过度表达。抑制这些途径的靶向治疗方式可以缩小或阻止 CP 的进展。此外,EGFR 抑制剂可能会使肿瘤对放射疗法敏感。这些药物在脑性瘫痪的医疗管理和新辅助治疗中显示出良好的前景。免疫疗法,包括抗白细胞介素 6 (IL-6) 药物和干扰素治疗,在控制肿瘤生长方面也非常有效。正在进行的脑性瘫痪临床试验有限,但正在测试 BRAF/MET 抑制剂和 IL-6 单克隆抗体。结论:遗传和免疫标记在脑性瘫痪的不同亚型中表现出不同的表达。目前几种分子疗法在治疗这种疾病方面取得了一些成功。额外的临床试验和靶向疗法对于改善脑性瘫痪患者的预后非常重要。
