米格尔·安赫尔·马丁-德尔加多 (Miguel Ángel Martín-Delgado) 教授是马德里康普顿斯大学 (UCM) 理论物理学教授、物理学博士。西班牙计量中心理事会成员、ELLIS 学会(欧洲学习与智能系统实验室)研究员、普林斯顿大学客座研究员以及多家国际知名机构的客座访问学者。自 2003 年成立以来,他一直领导马德里康普顿斯大学量子信息与计算研究小组。他是马德里康普顿斯大学理论物理硕士学位量子信息模块的协调员。他还是马德里自治区科学联盟 QUITEMAD(马德里量子信息技术中心)的总协调员、自然出版集团《科学报告》(量子物理领域)期刊的科学编辑以及皇家科学院通讯院士。他们的
Peng, L. (2012)。用于集成电路 3-D 堆叠的晶圆级细间距 Cu-Cu 键合。博士论文,南洋理工大学,新加坡。
4. 结果 8 4.1.量子电路的数学描述。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 8 4.1.1.量子比特的量子门。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 8 4.1.2.用于多个量子位的量子门。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 12 4.2.主要的量子算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 15 4.2.1. Deutsch-Jozsa 算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 16 4.2.2. Bernstein-Vazirani 算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 17 4.2.3.西蒙算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 17 4.2.4.量子傅里叶变换(QFT)。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 18 4.2.5.相位估计。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 20 4.2.6. Grover 算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 21 4.2.7. Shor 算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 23 4.3.量子算法的复杂性。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 24 4.3.1. Deutsch-Jozsa 算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 24 4.3.2. Bernstein-Vazirani 算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 24 4.3.3.西蒙算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 24 4.3.4. Grover 算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 24 4.3.5. Shor 算法。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。二十五
摘要: - 研究对Cu对Batio 3的结构过渡特性的影响进行了比较研究。对X = 0.1-0.3样品进行了研究,钛酸钡的化学公式为Batio 3。作为粉末,它是白色至灰色的,并具有钙钛矿结构。Batio 3使用最广泛的铁电材料。Batio 3在Curie温度下(T C〜120°C)具有化学公式ABO 3的钙钛矿结构(空间组R3C)。在室温下有四方结构。是铁电材料。铁电体是表现出类似于铁磁性磁性的电活动的结晶材料。由于它们自发的极化,即使在没有外场的情况下,这些材料也会显示出自发的极化,因此滞后作用。这发生在铁电材料中。直到给定温度,可以看到某种类型的行为。称为居里温度(TC)。此动作不超过此TC。到目前为止,我们已经通过合适的Cu掺杂组成(x = 0.1,0.2)来研究并表征了铁电BA 1-X Cu X Tio 3。RT-XRD表征产生了预期的特征峰,其中一些杂质峰表明系统中存在杂质阶段。拉曼峰在拉曼频谱中移动,导致了预期的拉曼模式,即300K时的a,e和混合模式a+e。关键字: - 居里温度,铁电,拉曼光谱,钙钛矿结构。
通过[Cu(PEN)2(OH 2)](CLO 4)2(C0)与胆汁ursoxyoxycholic Acid(UDCA)的反应制备了一种称为C0-UDCA的新型杂化铜(II)化合物。所产生的化合物能够抑制比前体C0和UDCA更有效的脂氧合酶。分子对接模拟阐明了与酶的相互作用,这是由于变构调节所致。新复合物通过激活未折叠的蛋白质反应,在内质网(ER)水平上对卵巢(SKOV-3)和胰腺(PANC-1)癌细胞的抗肿瘤作用。尤其是,在C0-UDCA存在下,伴侣BIP,促凋亡蛋白Chop和转录因子ATF6上调。完整细胞MALDI-MS和统计分析的组合使我们能够根据其质谱指纹区分未经处理和处理过的细胞。
加拿大公用事业公司战略的核心是希望成为一家统一的能源供应商,为客户提供一项基本服务,使他们能够避免依赖分散的供应商网络所带来的挑战。能源是生活中必不可少的服务之一。如果没有安全、可靠、有弹性且价格合理的能源,繁荣和机遇就无法实现。能源等基本服务能够抵御宏观经济逆风、地缘政治冲突和自然灾害,是我们经营所在辖区经济增长的重要推动力。我们独特的市场地位、利用我们在北美、拉丁美洲和澳大利亚等主要市场的专业知识的能力、我们的综合能力以及卓越的客户服务相结合,创造了难以复制的竞争优势,并通过收益和股息增长继续为股东创造价值。
基于Cu 2x Hg 2 -X Gete 4合金化合物(其中0≤x≤1)中CU溶解度的程度控制载体浓度的能力使Cu 2x Hg 2 -X Gete 4在热电学领域中有趣的案例研究。CU在此过程中清楚地发挥作用,但cu确切地将CU纳入Cu 2x Hg 2 -X Gete 4晶体结构以及该如何影响载体浓度。在这项工作中,我们使用谐振能量X射线差异(REXD)实验和密度功能理论(DFT)计算的组合来阐明Cu掺入Cu 2x Hg 2-Hg 2-x Gete 4结构的性质。REXD跨Cu K边缘有助于Cu 2x Hg 2-X Gete 4合金中Cu掺入的表征,并可以直接定量抗位点缺陷。我们发现,Cu以2:1的比例代替Hg,其中Cu歼灭了空缺并与Hg原子交换。dft计算确认此结果并进一步表明Cu的掺入优先发生在Z = 1/4或Z = 3/4平面之一上,然后再填充另一个平面。此外,发现由REXD量化的Cu Hg抗位点缺陷量与实验测量的孔浓度成正比,表明CU HG缺陷是CU 2X HG 2-HG 2-x Gete 4 Elloy中调谐载体浓度的驱动力。这里发现的晶体结构之间发现的链接,或更具体的抗位点缺陷,并且可以将较高的浓度扩展到相似的阳离子 - 阳离子材料系统,并通过缺陷工程有助于改善热电和其他功能材料的发展。
这些计划是由学术部门与利益相关者协商和需求评估调查进行设计,开发和审查的。他们得到了教职员工,本科研究委员会和研究生委员会的验证和验证。该计划然后由参议院批准。所有这些过程都以大学教育委员会(CUE),丘卡大学的标准操作程序和专业机构的要求的《大学法规》,大学法规和标准指导。然后将学位课程转发为大学教育委员会的认证。目前有22名证书,37个文凭,76学士学位,教育研究生学士学位(PGDE),69个硕士学位和53个博士学位课程。邀请适当合格的自赞助学生的申请参加下面显示的Chuka大学学术课程。入学是:全日制学生每年的9月,1月和5月;每年的12月,4月和8月,兼职/基于工作的学生。学习模式是白天,晚上或周末。教学方法是人,距离电子学习或混合。提供的学术课程的详细信息如下。Chuka University是机会均等的提供者。始终在申请前同年参考广告。
垂直堆叠的三维集成电路 (3D IC) 中的芯片间电通信由芯片间微凸块实现。微凸块的电迁移可靠性对于了解基于 3D IC 的微电子系统的可靠性至关重要。本文报告了通过热压键合在两个芯片之间形成的 Cu-Sn-Cu 微凸块的电迁移可靠性的实验研究。双芯片 3D IC 组装在线键合陶瓷封装中,并在不同温度下的空气和氮气环境中进行电迁移测试。测量了微连接链和开尔文结构的故障寿命和平均故障时间 (MTTF)。结果表明,Cu-Sn 微连接的本征活化能介于 0.87 eV 和 1.02 eV 之间。基于故障分析,提出了可能的故障机制。这项研究的结果有望提高人们对 3D IC 中电迁移可靠性的根本理解,并促进基于 3D IC 的稳健可靠的微电子系统的开发。2014 Elsevier BV 保留所有权利。