LightSail 计划包括开发、发射和运行两颗私人资助的 3U 立方体卫星,旨在推动太阳帆技术的发展。第一艘 LightSail 航天器主要用于演示太阳帆部署过程,于 2015 年春季成功完成近地轨道任务。第二艘 LightSail 任务计划于 2017 年发射,主要目标是演示地球轨道上的帆控制并提高远地点。LightSail 由行星协会管理,由世界各地的会员和私人捐助者资助,是有史以来最雄心勃勃的私人资助太阳帆计划。通过展示从 3U 立方体卫星平台部署和控制太阳帆的能力,LightSail 计划推动太阳帆成为一种可行的太空小型卫星推进技术。本文概述了 LightSail 计划,描述了航天器设计,并讨论了 LightSail 1 的初始试飞结果。
一般描述 piADS-B/Flight 模型是世界上第一款太空友好型自动相关监视广播或 ADS-B 扩展脉冲发生器、模式 S 无源雷达接收系统,无需部署、超低轮廓和功率要求。带有集成 RHCP 贴片天线,该产品旨在以有限的功率和质量预算跟踪来自低地球轨道 (LEO) 卫星、高空气球 (HAB) 或无人机 (UAV) 的飞机。与允许永久数据输出的传统空间级 ADS-B 接收器相比,它只需要 10% 的功率。易于使用的 UART 串行数据接口输出提供标准化 ASCII 语句,再加上外部 ADS-B 天线,为所有类型的空间级或地面项目提供智能独立解决方案,这些项目需要精确的飞机位置、类型、速度、方向或 ICAO/客机信息。该装置使用带有冗余引脚的单个六针 PicoBlade TM 连接器与电源和数据输出连接。重量和尺寸非常轻,非常适合所有对空间要求高的项目。飞行模型由 ESA 认证人员组装。
摘要 — 空间天气大气可重构多尺度实验 (SWARM-EX) 是一种分布式大气物理学仪器,由三个在低地球轨道运行的 3U 立方体卫星组成。在美国国家科学基金会和美国宇航局立方体卫星发射计划的支持下,SWARM-EX 旨在实现一系列具有挑战性的科学和工程目标。该任务的科学目标集中在通过使用每个航天器上的通量探测实验和平面朗缪尔探针传感器对赤道热层异常和赤道电离层异常进行现场测量来解决悬而未决的大气物理学问题。工程目标集中在通过一系列演示和实验来推进立方体卫星集群的最新技术。本文介绍了三项创新,这些创新将使 SWARM-EX 能够克服其重大挑战。首先,将科学目标形式化为一系列主要科学问题和次要测量演示,然后将其转化为必须进行现场测量的空间和时间尺度。然后使用这些尺度来定义航天器必须达到的相对轨道几何形状。其次,引入一种制导、导航和控制系统,该系统能够获取和维持所需的相对轨道配置。所提出的系统只需要地面控制员的最少输入,在航天器间近距离分离时提供被动安全性,并且能够通过利用新颖的混合推进/差动阻力控制方法以最少的推进剂消耗有效地实现大型集群重构。第三,提出了一种操作概念,使任务目标能够以时间和推进剂的高效性实现,同时对在轨异常提供显著的容忍度。详细讨论了操作概念,包括 (1) 每个阶段要解决的具体任务目标、(2) 每个阶段以及阶段过渡期间要使用的控制方法,以及 (3) 按阶段划分的 ∆ v 预算及其获取方式的说明。介绍了控制方法的交易,以及管理集群操作时面临的一些具体挑战,因为集群之间的航天器间隔从数百米到数千公里不等。
摘要 本文介绍了用于 FACSAT-2 (SAT-CHIRIBIQUETE) 太空任务的立方体卫星的关键设计,该卫星用于对哥伦比亚领土进行地理参考观测和分析,以保护环境。该卫星通过两个有效载荷提供电光多光谱图像(分辨率在 4.75 m 和 5 m 之间)数据,同时使用 1000-1700 nm 短波红外光谱范围内的光谱仪提供数据,用于监测温室气体。根据高级技术要求和操作概念,进行了空间、地面和发射段架构的输入识别和定义,定义了一个六单元卫星、一个位于卡利市的带有 S/X 波段天线的地面段,以及使用具有发射器相关特性的 EXOpod。根据欧洲航天局的 ECSS 标准,详细定义和表征了机械结构、电力系统、数据和命令处理系统、机载通信系统和姿态控制和确定系统的子系统。初始设计方案是根据空间、操作和技术要求以及可用于太空任务的财务预算定制的。值得注意的是,本文包含哥伦比亚的独家贡献,包括 S/X 波段天线的定义、加密软件以及物理接口板的设计和实施,以实现卫星总线和 Argus 2000 光谱仪之间的电子兼容性。关键词:FACSAT-2;立方体卫星;关键设计;航天器子系统;空间架构;MultiScape;Argus;地球观测;空间发展;哥伦比亚在太空。
平流层气溶胶通过其直接辐射效应影响地球的能量预算。Argos仪器将同时在多个视图方向上在多个波长处收集大气气溶胶的肢体散射数据。这种致密的采样可以减少气候模型计算的不确定性,使沃尔克尼式喷发全球气溶胶载荷增加了2-3倍。argos可以被视为下一代肢体剖面。这是Invest计划的第一个托管有效载荷(通过Loft Orbital),仪器和测量概念利用GSFC的IRAD计划和ESTO的仪器孵化器计划IIP。
摘要。本文讨论了立方体卫星小型航天器的电源组织。研究了立方体卫星机载设备的各种电源供应方法。提出了使用太阳能电池板 (SP) 为立方体卫星供电的方法。展示了用太阳能电池板生产所需尺寸的太阳能电池阵列的开发技术。考虑了太阳能电池板的输入控制组织,以提高可靠性并实现所生产太阳能电池板的最大效率。介绍了一种用于诊断太阳能电池的开发支架,可以检测潜在缺陷。讨论了确定所开发的太阳能电池板的功率特性以及实现其最大效率所需的最佳负载的问题。描述了在立方体卫星飞行器上安装太阳能电池板的方法。通过在平流层探测器上发射立方体卫星,在太空中测试太阳能电池板的效率。收集并处理了实验中获得的飞行器电流供应和太阳能电池板电流产生的参数,结果以图表的形式呈现在文章中。根据获得的数据,展示了在立方体卫星型小型飞机上使用太阳能电池板的有效性。
摘要 — 伽马射线模块 (GMOD) 是一项用于探测低地球轨道伽马射线爆发的实验,是 2-U 立方体卫星 EIRSAT-1 上的主要科学有效载荷。GMOD 包括一个与硅光电倍增管耦合的溴化铈闪烁体,由定制的 ASIC 处理和数字化。GMOD 主板上的定制固件已设计、实施和测试,用于管理实验的 MSP430 微处理器,包括系统的读出、存储和配置。该固件已在一系列实验中得到验证,这些实验测试了主要时间标记事件 (TTE) 数据在 50 Hz 至 1 kHz 的实际输入探测器触发频率范围内的响应。研究了固件的功耗和成功接收和传输数据包到机载计算机的能力。实验表明,在标准传输模式下,高达 1 kHz 的数据包丢失率低于 1%,功率不超过 31 mW。所展示的传输性能和功耗均在此 CubeSat 仪器所需的范围内。索引术语 —CubeSat、伽马射线、探测器、伽马射线爆发、欧洲航天局“飞向你的卫星!”计划
立方体卫星已成为深空探索的重要选择,但必须提高其自主性,以最大限度地提高科学回报,同时限制操作的复杂性。我们在此介绍了一种在深空巡航的立方体卫星背景下的自主轨道确定解决方案。研究案例是从地球到火星的旅程。考虑使用立方体卫星标准的光学传感器。添加图像处理以 0.2 ” 的精度提取遥远天体的方向:它由多重互相关 (MCC) 算法组成,该算法使用图像背景中的明亮恒星。然后,构建无迹卡尔曼滤波器 (UKF) 以从天体的连续方向执行异步三角测量。在无法进行线性近似的情况下,UKF 满足预期性能。在地球-火星巡航中期,轨道重建达到 30 公里的 3 σ 精度。此外,使用典型的 CubeSat 硬件,滤波器的中央处理器 (CPU) 成本估计为每次迭代不到 1 秒。它已准备好在与数据融合、更快收敛和姿态控制节省相关的新可观测量方面进一步改进。
月球门将在月球周围或L2 Lagrange点的光晕轨道上放置在轨道上。拟议的Lunar Gateway是一种改变游戏规则的人,可以利用Cubesats启用新科学,并为利用这些小型航天器作为探险家提供了令人耳目一新的新机会。我们建议开发一个月球底兰特,该降落器将从月球网关物流模块(假定在L2处)部署,以执行对月面的科学和探索。Cubesat Lander将降落在Mare Tranquilitatis附近,以确定空隙的程度,并确定挥发性资源的存在,包括其Regolith中的水。Cubesat Lander是一个27U,其固定尺寸为34 cm×35 cm×36 cm,质量为54 kg。它将从月球网关部署,并通过使用其板载高性能绿色推进(HPGP)系统进行月球轨道插入,然后进行下降操纵,以进入距月球表面25公里的高度。从那里,登陆器将在母马静脉下进行动力下降,需要4-6分钟。车载视觉导航将通过迅速发射下降推进器来降落在母马静脉区域上。Lander配备了通过对Regolith(Vapor)仪器进行挥发性分析,以执行Lunar Regolith的热解和质谱法。此外,它将携带三个球形跳跃机器人(Spherex),这些机器人将跳到坑内,以执行矿坑内的岩石石的映射和电阻抗光谱,以确定水中的存在。