介绍:卵巢癌是妇科系统的顽固恶性肿瘤,死亡率很高。Docetaxel(DTX)是抗肿瘤药物紫杉烷的第二代,在某些癌症中表现出了比经典的紫杉醇(PTX)优越的功效。 但是,其临床应用受到差的生物利用度的阻碍。 已经发现了天然香料提取物姜黄素(CUR),以改善DTX的生物利用度。 因此,在卵巢癌疗法中,使用甲氧基聚(乙二醇) - 聚(L-乳酸)共聚物(MPEG-PLA)共聚物的甲氧基聚(L-乳酸)共聚物的混合药物策略是有意义的。 方法:在研究中合成并表征了可注射的DTX-CUR/M纳米细胞。 模拟了DTX,CUR和共聚物之间的分子相互作用,并研究了药物释放行为。 在异种移植人类卵巢癌的细胞和小鼠模型中评估并探索了DTX-Cur/M的抗肿瘤活性和抗肿瘤机制。 结果:获得平均粒径为37.63 nm的DTX-CUR/M纳米细胞。 药物释放实验显示DTX-Cur/M纳米细胞持续释放药物。 MTT分析和凋亡研究表明,与单独使用DTX或CUR相比,DTX-CUR/M对A2780细胞表现出更强的抑制和促凋亡作用。 体内抗肿瘤实验结果证实,DTX-CUR/M通过抑制肿瘤增殖,抑制肿瘤血管生成ESI并促进肿瘤凋亡,在抗卵巢癌治疗中起着最有效的作用。 关键字:多西他赛,姜黄素,卵巢癌,纳米载体,联合交付Docetaxel(DTX)是抗肿瘤药物紫杉烷的第二代,在某些癌症中表现出了比经典的紫杉醇(PTX)优越的功效。但是,其临床应用受到差的生物利用度的阻碍。已经发现了天然香料提取物姜黄素(CUR),以改善DTX的生物利用度。因此,在卵巢癌疗法中,使用甲氧基聚(乙二醇) - 聚(L-乳酸)共聚物(MPEG-PLA)共聚物的甲氧基聚(L-乳酸)共聚物的混合药物策略是有意义的。方法:在研究中合成并表征了可注射的DTX-CUR/M纳米细胞。模拟了DTX,CUR和共聚物之间的分子相互作用,并研究了药物释放行为。在异种移植人类卵巢癌的细胞和小鼠模型中评估并探索了DTX-Cur/M的抗肿瘤活性和抗肿瘤机制。结果:获得平均粒径为37.63 nm的DTX-CUR/M纳米细胞。药物释放实验显示DTX-Cur/M纳米细胞持续释放药物。MTT分析和凋亡研究表明,与单独使用DTX或CUR相比,DTX-CUR/M对A2780细胞表现出更强的抑制和促凋亡作用。体内抗肿瘤实验结果证实,DTX-CUR/M通过抑制肿瘤增殖,抑制肿瘤血管生成ESI并促进肿瘤凋亡,在抗卵巢癌治疗中起着最有效的作用。关键字:多西他赛,姜黄素,卵巢癌,纳米载体,联合交付结论:我们通过全身给药设计了可注射的DTX-CUR/M纳米细胞,用于DTX和Cur剂的共递送到肿瘤部位。DTX-CUR/M纳米固体将是一种可生物降解,可持续和强大的抗肿瘤药物候选者,具有巨大的卵巢癌治疗潜力。
摘要:为了解决目前可靠性模拟试验环境搭建时间长、难度大的问题,提出了一种基于PCP的可靠性模拟试验环境搭建方法,该方案能够在PCP上进行PCP的可靠性测试,测试环境搭建过程中,保证PCP的可靠性,提高PCP的可靠性。
摘要:为了解决目前可靠性模拟试验环境搭建时间长、难度大的问题,提出了一种基于PCP的可靠性模拟试验系统,用于PCP的可靠性测试。
卵巢癌是最致命的妇科恶性肿瘤,是女性癌症相关死亡的主要原因(Siegel 等人,2021 年)。尽管在治疗方面取得了一些进展,但晚期卵巢癌患者的 5 年相对生存率在过去几十年中并没有显着提高(Vaughan 等人,2011 年;Kuroki 和 Guntupalli,2020 年)。紫杉醇 (PTX) 属于紫杉烷类,是最广泛使用的抗肿瘤药物之一,被推荐作为多种癌症(包括卵巢癌和乳腺癌)的一线治疗。PTX 的作用机制是抑制微管的解聚,导致有丝分裂停滞延长,从而导致细胞死亡(Long 和 Fairchild,1994 年;Kavallaris,2010 年)。 PTX 和铂类化疗联合被公认为必不可少的治疗方法,尤其是在晚期病例中( Kuroki and Guntupalli,2020 )。然而,传统癌症疗法的持续使用会导致化学耐药性,并且很大一部分患者随着化学耐药性的产生而出现疾病复发。化学耐药性是一个棘手的问题,最终导致卵巢癌患者面临治疗失败和死亡( Pinato et al.,2013 )。虽然抗血管生成药物和 PARP 抑制剂等不同的靶向疗法在治疗持续性和复发性疾病方面显示出光明的前景,但它们尚未满足临床需求。因此,开发新的治疗方法对于卵巢癌患者来说迫在眉睫。多年来,联合治疗的概念已经被引入到癌症治疗的发展中( Bayat Mokhtari et al.,2017 )。有趣的是,传统中医药已在世界各地被广泛应用于各种癌症的补充和替代疗法。姜黄素 (Cur) 是从姜黄根茎中提取的天然酚类化合物,具有抗炎、抗氧化等全面的药理特性 (Zhang et al., 2015; Su et al., 2016)。先前的研究表明,Cur 可以发挥强大的抗癌特性,例如抑制癌细胞增殖和促进癌细胞死亡 (Xu et al., 2021)。Cur 还可以使癌细胞对一些化疗药物(如顺铂和吉西他滨)敏感,因此可用于多种癌症的联合治疗 (Yallapu et al., 2010; Yoshida et al., 2017; Zhang et al., 2017; Zheng et al., 2021)。此外,Cur 被 FDA 列为“公认安全 (GRAS)”化合物,支持其与传统化疗联合使用时的安全性和耐受性(Gupta 等,2013)。最近,几项临床前研究表明 Cur 增强了 PTX 介导的卵巢癌细胞细胞毒性,可能是一种有希望逆转癌症治疗中多种药物耐药性的药物(Liu 等,2016;Wei 等,2017)。然而,Cur和PTX联合治疗卵巢癌的治疗效果及其潜在的分子机制尚未完全揭示。微小RNA(miRNA)是约22个核苷酸的单链非编码RNA。miRNA可以通过靶向mRNA的3′非翻译区(3′UTR)参与翻译后修饰。已证明miRNA与肿瘤发生和肿瘤进展密切相关。miR-9-5p最近与癌症有关。越来越多的证据表明,miR-9-5p作为一种致癌iR,促进多种癌症(如非小细胞肺癌和前列腺癌)中的癌细胞增殖、侵袭和迁移(Li等,2017;陈
5. Luiza Koop B. 等人。“黄酮类化合物、花青素、甜菜碱、姜黄素和胡萝卜素:来源、分类以及通过封装和吸附增强稳定性”。食品研究国际 153 (2022):110929。
姜黄素(CUR)是一种关键化合物,广泛用于药物和医疗应用,例如抗氧化剂,抗菌,抗癌和抗炎药。然而,由于其不溶性,低生物利用度和快速降解,其某些局限性在不同目的面临。可以通过制定CUR纳米颗粒(CUR-NP)来克服这些局限性,以提高其生物活性并增强其溶解度。这项研究旨在合成和表征Cur-NP,并评估针对不同致病微生物的抗氧化活性和抗菌效率。cur- cur-对大肠杆菌,鼠伤伤口和Y. Enterocolitica(革兰氏阴性菌),S。Aureus,B。cereus(gram阳性)以及致病性真菌(Aspergillus niger,flavus niger,flavus fimim nighim fimim fimant and consociritica)和pen虫膨胀的抗菌效率。合成的Cur-NP显示出圆形,平均尺寸为44±8 nm,43±4 mVξ-电位。cur-nps以剂量依赖性的方式显示出有效的抗氧化剂(IC50为1550 µg/ml)和针对测试细菌和真菌的抗菌特性。可以得出结论,Cur-NP是一个有希望的候选人,可以用作食物保存或医疗和药物应用以替代抗生素的抗生素。
调制器在每位能耗方面极其节能 [5],并能克服基于等离子体色散效应的电流调制器在速度、噪声和功耗方面的限制 [6]。这依赖于在小电极分离下可达到的高电场值,能够在电荷的排斥/去除方面引起更有效的折射率变化。事实上,电场会沿共轭聚合物链引起电子的离域,因此不需要像等离子体色散效应那样进行载流子传输。在绝缘体上硅 (SOI) 技术中使用有机材料的能力引起了各个科学领域的极大兴趣,包括但不限于高速调制器 [7]、可调谐光学滤波器 [8]、高精度计量 [9] 和频率梳 [10]。然而,非线性光学材料在SOI技术平台的混合集成仍是当前研究的重点,线性和二次电光效应是这一进展的主要内容,需要进一步研究。
调制器在每位能耗方面极其节能 [5],并能克服基于等离子体色散效应的电流调制器在速度、噪声和功耗方面的限制 [6]。这依赖于在小电极分离下可达到的高电场值,能够在电荷的排斥/去除方面引起更有效的折射率变化。事实上,电场会沿共轭聚合物链引起电子的离域,因此不需要像等离子体色散效应那样进行载流子传输。在绝缘体上硅 (SOI) 技术中使用有机材料的能力引起了各个科学领域的极大兴趣,包括但不限于高速调制器 [7]、可调光学滤波器 [8]、高精度计量 [9] 和频率梳 [10]。然而,非线性光学材料在SOI技术平台的混合集成仍是当前研究的重点,线性和二次电光效应是这一进展的主要内容,需要进一步研究。