委员会的责任:•在心脏传染病领域进行审查和评估新的医学/科学知识,尤其是风湿热,感染性心内膜炎和川崎病; •准备有关预防和治疗儿童和成人感染性心内膜炎的科学陈述; •准备有关治疗链球菌性咽炎和预防风湿热的科学陈述;并定期更新琼斯标准; •准备川崎疾病患者的诊断和急性管理的科学陈述; •刺激该领域进一步知识的发展和积累; •发展与这些传染病有关的科学会议; •提供与这些疾病有关的教育事项指导; •参加AHA科学会议和/或为公众准备小册子,小册子和其他材料。
责任:委员会责任:•审查和评估成人先天性心脏病领域的新医学/科学知识; •启动有关先天性心脏病成年人的诊断和治疗的科学陈述或科学咨询; •刺激该领域进一步知识的发展和积累; •为与成人先天性心脏病有关的教育事项提供指导,并为与该主题相关的医师和其他健康提供者准备教育材料; •参加AHA科学会议,为公众准备小册子,小册子和其他材料。
GaSb 在长波长器件中有许多应用,例如带间级联激光器和红外光电探测器 [1-2]。将 GaSb 相关材料单片集成到硅上对于扩展长波长器件的功能和硅平台上的光子集成具有很高的吸引力 [3]。此外,考虑到现代智能手机中红外设备(包括传感器和投影仪)的日益普及,集成到硅上是降低制造成本、减小尺寸和提高产量的有效解决方案。然而,与 GaAs/Si 和 InP/Si 材料系统相比,GaSb/Si 异质外延还远未成熟。在本研究中,以在 GaAs 衬底上生长的 GaSb 为参考,我们研究了两种不同的集成方案:在 GaAs-on-Si 模板上进行 GaSb 的界面失配 (IMF) 生长和使用长宽比捕获技术直接在 V 型槽 Si 上生长 GaSb。
CVD Ceramics 的化学气相沉积 CVD 硫化锌 ® 是红外窗口、圆顶和光学元件的低成本替代品。硫化锌的断裂强度是硒化锌的两倍,而且硬度高,已成功用于许多需要机械抗恶劣环境的军事应用。Cleartran ® 是一种 CVD 硫化锌 ® 材料,通过后沉积热等静压工艺进行改性。该工艺从晶格中去除锌氢化物,使晶体结构正常化并净化材料,所有这些都有助于在可见光至远红外范围(0.35 -14 微米)内实现单晶般的透射率。由于其在宽传输范围内的吸收和散射率低,光学质量高,它特别适合需要单个孔径用于多个波段光束路径的多光谱应用。 CVD Zinc Sulfide ® 和 Cleartran ® 具有化学惰性、不吸湿、高纯度、理论上致密且易于加工。可根据您的规格定制直径、矩形、CNC 异形毛坯、生成的镜片毛坯、棱镜和近净形圆顶。
为了实现大规模集成,在半导体衬底上制造的集成电路需要多层金属互连,以将半导体芯片上的半导体器件的离散层电连接起来。不同层级的互连由各种绝缘层或介电层隔开,这些绝缘层或介电层通过蚀刻孔将一层金属连接到下一层金属。随着特征尺寸的缩小和芯片上晶体管密度的进一步增加,后端铝互连的电阻和寄生电容已成为限制高性能集成电路 (IC) 电路速度的主要因素。1-2) 通过减小绝缘层的厚度,金属线之间的层内和层间电容会增加,因为电容与线之间的间距成反比。随着电容的增加,电阻-电容 (RC) 时间延迟会增加。增加 RC 时间延迟会降低电路的频率响应并增加信号通过电路的传播时间,从而对
* 巴塞尔大学物理系,Klingelbergstrasse 82, 4056 Basel,瑞士(michel.calame@unibas.ch;blaise.jeanneret@metas.ch)摘要 — 石墨烯是一种由碳原子以六边形晶格排列的单原子厚度材料,由于其有趣的电气和机械特性而被广泛吹捧为新的神奇材料 [1]。特别是在石墨烯中观察到的量子霍尔效应 (QHE) 为新的量子电阻标准开辟了道路。我们的研究重点是化学气相沉积 (CVD) 石墨烯的 QHE 和拉曼表征。在本文中,我们描述了石墨烯薄膜的 CVD 生长、它们向基材的转移以及使用拉曼光谱和电传输测量对其进行表征。索引词 — 石墨烯 (G)、化学气相沉积 (CVD)、铜 (Cu)、量子霍尔效应 (QHE)。引言 2004 年发现石墨烯后不久 [2],石墨烯薄膜在室温和极高磁场中表现出非常清晰的 QHE 特征 [3]。这一观察结果引发了电工计量界的热烈讨论,人们设想开发一种新型初级电阻标准。如今,人们已经在石墨烯薄膜上实现了量子霍尔电阻 (QHR) 的精确测量,精度达到了前所未有的 8.6 × 10 -11 μΩ/Ω [4]。这些结果是在 Si/C 单晶基板上生长的石墨烯薄膜上获得的。另一个有前途的测量方法是使用
a School of Computing and Electrical Engineering, Indian Institute of Technology (IIT), Mandi 175001, Himachal Pradesh, India b Electronics and Microelectronics Division, Indian Institute of Information Technology (IIIT), Allahabad 211011, Uttar Pradesh, India c Department of Bio and Nano Chemistry, School of Mechanical Systems Engineering, Kookmin University, Seoul, South Korea d School of Basic印度理工学院科学研究所(IIT),曼迪175001,喜马al尔邦,印度E能源研究中心,印度技术学院光伏实验室(IIT) - 德里,新德里,新德里110016,印度印度印度纳米级,印度工程学院,印度科学系,IIT 16 Kanpur,IIT,IIT,IIT,IIT,IIT,IIT,IIT,IIT,IIT,IIT,IT, Kurukshetra University,Kurukshetra 136119,印度
二氧化硅SIO 2薄膜使用大气压化学蒸气沉积APCVD与四乙基硅酸盐Teos和臭氧O 3作为反应剂气体。这些纤维用作低温多晶型甲甲硅硅LTP薄膜晶体管TFTS的栅极介电。O 3气体而不是氧气O 2气体,因为后者与LTPS TFT的低温处理不兼容。SiO 2在低温下沉积的纤维纤维对栅极绝缘体材料所需的Si – OH含量和电性能低。尽管使用APCVD沉积的低成本SIO 2纤维制造了LTPS TFT,但制造的设备表现出49 cm 2 / v s的效果迁移率和490 mv / dec的subs Thresshord Swist。结果表明,APCVD用TEOS和O 3沉积的SIO 2是一种有前途的材料,用于低成本和高质量的LTPS TFTS。©2009电化学学会。doi:10.1149/1.3267039保留所有权利。
摘要 本文介绍了对 CVD 钻石进行的研究,以确定带电粒子的痕迹(CVD 是化学气相沉积的缩写)。辐射硬度是探测器的先决条件,探测器应在 CERN 大型强子对撞机的 ATLAS 和 CMS 实验的相互作用区域附近工作。基于金刚石的探测器可能是该领域像素探测器和条形探测器的抗辐射选择。这项工作包含四个主要成果。首先,将某厂商钻石样品的探测器质量从30μm电荷采集距离提高到200μm。其次,首次运行基于金刚石的微带探测器:金刚石带探测器在信号分布峰值处实现了 50:1 的信噪比,最可能的电荷信号为 5000 e 。轨迹预测的误差在 12 μm 和 16 μm 之间,对于低于 1000 e 的信号阈值,探测器效率通常接近 100%。第三个结果是 CVD 钻石的不均匀性扩大了信号分布。这并不奇怪,因为 CVD 钻石是多晶的。第四个要点是 CVD 钻石的辐照,这是首次使用质子、中子和介子进行辐照,其剂量部分高于大型强子对撞机的预期剂量。这里检查的钻石样品具有抗辐射性,具体取决于颗粒类型和剂量。我作为 CERN ATLAS/SCT 小组的成员在探测器研究项目 RD42 中开展了这项工作。
