在计算神经科学中,脑微电路和区域的生物学现实模型的发展是一个非常相关的主题。从基础研究到临床应用,对准确的模块的需求不断增长,该模型融合了局部细胞和网络特异性,能够捕获与给定大脑区域相关的广泛动态和功能。这些模型的主要挑战之一是不同尺度之间的通过,从微观(蜂窝)到中索(MicroCircuit)和Macroscale(区域或全脑级别),同时在同时限制计算资源的需求。解决此问题的一种新颖方法是使用神经元活动的平均场模型来构建大规模的模拟。这为相对较低的计算需求之间的量表之间的通过提供了有效的解决方案,这是由于系统维度的急剧降低而实现的。在本文中,我们引入了海马CA1的多尺度模拟框架,这是大脑的一个区域
2000 年 1 月 27 日起,当前的旺格雷强制广播区 (NZC116) 和进近条件区 (NZC117) 将停用,并由新的强制广播区 (NZC114) 取代。此更改是在与要求更改的当地运营商协商后做出的。大家认为,一个包含旺格雷机场的大型 MBZ 将为飞行员提供比旧进近条件区及其相邻 MBZ 更高的安全性。只有一种特殊用途空域还将确保所有飞机都配备无线电设备并定期进行位置报告。此外,着陆灯或防撞灯必须打开(如果安装)。有关此空域更改的更多详细信息,请参阅 AIP 补充 AIRAC 周期 00/1(2000 年 1 月 27 日生效)。AIP 始终是此类更改的官方来源,在任何飞行前都应检查当前补充。如果您经常飞越旺格雷地区,您可能希望将 AIP 补充说明的副本附加到您当前的图表上,直到 2000 年 7 月 15 日新航空图发布。2000 年 7 月 15 日的地形图不仅会反映这些变化,还会以与陶波 VTC 相同的方式描绘从斯普林菲尔德 NDB 到机场的最终仪表进近航迹。这将有助于 VFR 交通更准确地确定 IFR 飞机可能从哪里进近。
神经工程领域的最新进展使得神经假体得以开发,这有助于神经系统疾病患者的功能恢复。在这项研究中,我们提出了一个实时神经形态系统来人工重现海马体 CA1 区域不同神经元群的 θ 波和放电模式。海马 θ 振荡(4-12 Hz)是一种重要的电生理节律,有助于导航、记忆和新颖性检测等各种认知功能。提出的 CA1 神经模拟电路包括现场可编程门阵列 (FPGA) 上的 100 个线性化的 Pinsky-Rinzel 神经元和 668 个兴奋性和抑制性突触。实施的 CA1 脉冲神经网络包括产生 θ 节律的主要神经元群:兴奋性锥体细胞、PV+ 篮状细胞和抑制性中间神经元 Oriens Lacunosum-Moleculare (OLM) 细胞。此外,还使用突发漏积分和放电 (LIF) 神经元模型在 FPGA 上实现了通过穿通通路从内嗅皮层到 CA1 区域、通过 Schaffer 侧支到 CA3 区域以及通过穹窿海马伞到内侧隔膜到 CA1 区域的主要输入。硬件实现的结果表明,所提出的 CA1 神经模拟电路成功重建了 theta 振荡,并在功能上说明了不同神经元群体放电反应之间的相位关系。还评估了内侧隔膜消除对 CA1 神经元群体放电模式和 theta 波特征的影响。该神经形态系统可被视为一个潜在平台,为未来神经假体应用开辟了机会。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可协议 ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 开放获取的文章。
目的 颅内人脑记录通常使用无法区分单个神经元动作电位的记录系统。在这种情况下,无法通过功能电路内的位置来识别单个神经元。本文展示了在 CA3 和 CA1 细胞场内单独记录的海马神经元的定位验证。方法 在 23 名接受侵入性监测以识别癫痫发作灶的人类患者体内植入了大-微深层电极。通过位于海马内的大-微深层电极记录的细胞外动作电位波形来分离和识别单个神经元。使用 3T MRI 扫描对 23 名植入患者以及 46 名正常(即非癫痫)患者和 26 名有癫痫病史但没有深层电极放置史的患者的海马进行形态测量调查,从而提供海马沿典型植入轨迹的平均尺寸。根据记录电极位置、深部电极的立体定位与形态测量调查的对比以及术后 MRI,暂时确定其在 CA3 和 CA1 细胞场内的定位。根据波形和放电频率特征,将细胞选为候选 CA3 和 CA1 主要神经元,并通过功能连接测量确认其位于 CA3 至 CA1 神经投射通路内。结果互相关分析证实,近 80% 的假定 CA3 至 CA1 细胞对表现出与细胞间前馈连接相符的正相关,而只有 2.6% 表现出反馈(逆)连接。即使排除了同步和长延迟相关性,在总共 4070 对中的 1071 对(26%)中发现了 CA3-CA1 对之间的前馈相关性,这与已发表的动物研究中报告的 20%–25% 前馈 CA3-CA1 相关性相比更为有利。结论 本研究证明了在活体中记录人类大脑特定区域和子域神经元的能力。随着脑机接口和神经假体研究的不断扩展,有必要能够识别感兴趣的神经回路内的记录和刺激位点。
摘要 - 在啮齿动物的导航研究中,在海马次区域CA1和下毛(Sub)中都鉴定出空间反应,但这两个大脑区域似乎对空间特征进行了不同的编码。位于子位置细胞的位置比CA1更大且特异性较少。此外,子神经元显示出针对行进标题和轴的更强定向调制。基于记录在“ Triple-T”迷宫上执行导航任务的神经和行为数据,我们提出了一个尖峰的神经网络建模框架,以复制在CA1和SUB中观察到的响应属性。将峰值定时依赖性可塑性和同源缩放(STDP-H)的参数进化,以使两种不同的SNN类似于CA1的录音的响应,当大鼠穿越Triple-t Maze时。我们的结果表明,位置输入在形成CA1位置细胞中可能更具影响力,而Sub似乎同时集成了同类中心位置信息和自我运动提示,以编码“位置类别”。此外,我们的结果预测,这些区域中不同的空间响应可能部分归因于不同的stdp-H学习参数。此处介绍的框架可以用作自动参数调整系统,用于复制其他大脑区域的响应。
下托 (SUB) 在空间导航中起着至关重要的作用,其对导航信息的编码方式与海马 CA1 区不同。然而,下托群体活动的表征仍然未知。在这里,我们研究了在执行 T 迷宫和旷场任务的大鼠的 CA1 和 SUB 中细胞外记录的神经元群体活动。这两个区域中的群体活动轨迹都局限于与外部空间同态的低维神经流形。SUB 中的流形比 CA1 中的流形传达位置、速度和未来路径信息的解码精度更高。在大鼠和 CA1 和 SUB 的区域之间以及 SUB 中的任务之间,流形表现出共同的几何形状。在慢波睡眠中的任务后波动期间,群体活动在 SUB 中比在 CA1 中更频繁地表示奖励位置/事件。因此,CA1 和 SUB 将信息明显地编码到神经流形中,这些流形是清醒和睡眠期间导航信息处理的基础。
图1。利益区域。在感兴趣的大脑区域中CCO组织化学的采样框架。cINGUTUES CORTEX = CG,前Bic cortex = PL,fralimbic Cortex = il,背纹状体= std,std,Accumbens shell = accumbens core = accumbens core = accc,中间septum = ms,septum = ms,septum = ms septum = ls = ls,thalamus terodorsal terodorsal = ad teroforsal = ad,thalamus av avalamus avalamus avalamus avalamus avalamus avalamus antermus anteralial antermuls anteralial, Amygdala=BLA, Central Amygdala=CeA, Lateral Amygdala=LaA, field CA1 of hippocampus=CA1, field CA3 of hippocampus=CA3, Dentate Gyrus=DG, Supramammilar=SuM, Medial Medial Mammillary=MMM, Medial Lateral Mammillary=MML, Ventral Tegmental Area=VTA, Perirhinal cortex = prh,innorrinal cortex = ent。
10探索因果方面的线索(Mendelian Randomiza 11小胶质细胞衍生的外围单核细胞作为进入大脑的窗口:一种有益的工具,用于理解AUD对CNS的影响。 12淀粉蛋白血管病通过改变脑ad骨 13初步研究:肠道功能<在实验性宫颈脊髓损伤之后。 14个闭环体温调节作物<小鼠睡眠结构的 15低脐带血孕酮预测早产儿的神经认知结果较差。 在PTSD,抑郁症和睡眠呼吸暂停对Subjec 17源自胶质母细胞瘤aber radia的细胞外囊泡<促进小胶质细胞介导的神经毒性。 18 CDHR1A通过与PCDH15B的Interac 在手术治疗的Degenera 20对健康的年轻人睡眠结构的经皮迷走神经s 21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。11小胶质细胞衍生的外围单核细胞作为进入大脑的窗口:一种有益的工具,用于理解AUD对CNS的影响。12淀粉蛋白血管病通过改变脑ad骨 13初步研究:肠道功能<在实验性宫颈脊髓损伤之后。 14个闭环体温调节作物<小鼠睡眠结构的 15低脐带血孕酮预测早产儿的神经认知结果较差。 在PTSD,抑郁症和睡眠呼吸暂停对Subjec 17源自胶质母细胞瘤aber radia的细胞外囊泡<促进小胶质细胞介导的神经毒性。 18 CDHR1A通过与PCDH15B的Interac 在手术治疗的Degenera 20对健康的年轻人睡眠结构的经皮迷走神经s 21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。13初步研究:肠道功能<在实验性宫颈脊髓损伤之后。14个闭环体温调节作物<小鼠睡眠结构的 15低脐带血孕酮预测早产儿的神经认知结果较差。 在PTSD,抑郁症和睡眠呼吸暂停对Subjec 17源自胶质母细胞瘤aber radia的细胞外囊泡<促进小胶质细胞介导的神经毒性。 18 CDHR1A通过与PCDH15B的Interac 在手术治疗的Degenera 20对健康的年轻人睡眠结构的经皮迷走神经s 21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。15低脐带血孕酮预测早产儿的神经认知结果较差。在PTSD,抑郁症和睡眠呼吸暂停对Subjec 17源自胶质母细胞瘤aber radia的细胞外囊泡<促进小胶质细胞介导的神经毒性。 18 CDHR1A通过与PCDH15B的Interac 在手术治疗的Degenera 20对健康的年轻人睡眠结构的经皮迷走神经s 21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。17源自胶质母细胞瘤aber radia的细胞外囊泡<促进小胶质细胞介导的神经毒性。18 CDHR1A通过与PCDH15B的Interac 在手术治疗的Degenera 20对健康的年轻人睡眠结构的经皮迷走神经s 21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。在手术治疗的Degenera 20对健康的年轻人睡眠结构的经皮迷走神经s 21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。20对健康的年轻人睡眠结构的经皮迷走神经s 21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。21闭合损伤对小鼠的Ca1和齿状神经元功能的影响。
我们提出了一个多区域大脑模型,该模型探讨了内部海马区域在空间嵌入决策任务中的作用。利用累积的任务,我们模拟了反映hippocampus Ca1区域内形成的认知图的决策过程。我们的模型集成了将网格和位置单元格结合的两分记忆支架结构,并与复发性神经网络(RNN)一起基于感觉输入和网格单元格表示,以模拟动作选择。我们证明,在模型中内侧内侧皮层(MEC)和CA1中的位置和证据信息的联合编码复制了对位置细胞行为的实验观察,并迅速学习。我们的发现表明网格单元被共同调节以定位和证据。
