大约三分之一的新生儿癫痫发作对包括苯巴比妥在内的第一线抗惊厥药不反应,从而增强了阶段性抑制。当GABA在这个年龄段主要是去极性时,新生儿的癫痫发作是否会降低新生儿的癫痫发作样活性。我们评估了使用THIP [4,5,6,7-四氢异沙唑(5,4-C)吡啶-3-OL,GABOXADOL],δ-s-subunit - 选择性GABA A受体激动剂,降低癫痫发作的活性,使用Neonatal C57bl/6J pers ne pers perseps c57bl/6j,是否会增加富集性抑制作用。急性脑切片。全细胞斑块钳记录表明,thip增强了V层新皮层和CA1锥体神经元中的GABA能抑制性 - 迭代性 - 及其在不改变SEPC特征的情况下增加了其rheobase。两光子钙成像表明,增强两个大脑区域的神经元纤维性的活性降低了神经元纤维。在4-氨基吡啶和低Mg 2+的药物癫痫发作中,以剂量依赖性的方式,thip降低了新皮层和新生儿和成人脑切片的新生儿和成人脑切片的CA1海马区域的癫痫活性。我们得出的结论是,新皮层V和CA1锥体神经元具有滋补性抑制性电导,并且在增强时,它们会减少神经元的结构并降低癫痫发作样活性。因此,增强补品抑制可能是治疗新生儿癫痫发作的可行方法。
NASA 支持可再生能源,并将继续与海洋能源管理局 (BOEM) 合作,以限制中大西洋进一步开发对我们的发射和试验场运营的影响。NASA 与 BOEM 密切合作,就中大西洋 CA1 提供反馈,以确保任何潜在的开发都将对发射场运营产生最小影响。
术语表 (注1) 腹侧海马CA1区 海马被称为记忆的中心,其背部和腹部具有不同的功能。已知海马体背侧CA1区域的神经元储存着关于空间和时间的信息,而该研究小组发现腹侧CA1区域的神经元储存着关于“别人是谁”的记忆。 (注2)体内基因组编辑技术(CRISPR/Cas9方法) 一种切割目标基因组序列中的DNA双链的基因修饰工具。 CRISPR/Cas9 由切割 DNA 的“Cas9 核酸酶”和识别目标基因组序列的“引导 RNA”组成。 DNA断裂常常无法准确修复这一事实可以用来诱发目标基因的突变。近年来,体内基因组编辑技术备受关注,该技术通过直接传递 CRISPR/Cas9 分子实现生物体内部基因组编辑。该技术不仅在基础研究方面被寄予厚望,在遗传疾病的临床应用方面也被寄予厚望,该技术的发现获得了2020年的诺贝尔化学奖。 (注3)细胞外囊泡 细胞外囊泡是由细胞分泌的脂质膜囊泡,含有多种核酸、脂质、蛋白质等。众所周知,细胞通过将这种分子运送到其他细胞来相互通讯。近年来,人们越来越期待将治疗分子封装在细胞外囊泡中以用于生物制药的应用。在本研究中,我们将 CRISPR/Cas9 方法的分子封装在细胞外囊泡中,并将其引入目标脑区域以诱导脑区域特异性突变(图 4)。
摘要 海马由沿隔颞轴重复的刻板神经元回路组成。该横向回路包含具有刻板连接的不同子区,支持关键的认知过程,包括情景记忆和空间记忆。然而,现有技术无法对体内横向海马回路进行全面测量。在这里,我们开发了一种通过植入玻璃微潜望镜对清醒小鼠的横向海马平面进行双光子成像的方法,允许光学访问主要的海马子区和锥体神经元的树突树突。使用这种方法,我们追踪了 CA1 顶端树突的树突形态动态并描述了树突棘周转。然后我们使用钙成像来量化位置和速度细胞在子区中的普遍性。最后,我们测量了空间信息的解剖分布,发现空间选择性沿 DG 到 CA1 轴分布不均匀。这种方法扩展了现有的海马回路结构和功能测量工具箱。
叶。在本章中,我们将讨论在计算机模型中重建啮齿动物海马的方法。由于海马结构在哺乳动物中大多得以保留,因此一些见解可能不仅限于啮齿动物。在啮齿动物中,海马体是位于新皮质正下方的显著结构。当我们说海马体时,我们指的是四个亚区域:齿状回 (DG)、海马角 1、2 和 3 (CA1、CA2 和 CA3)。一些作者使用术语海马体仅指 CA1、CA2 和 CA3。最后,对于术语海马体形成,我们还包括下托、前下托、副下托和内嗅皮质。海马体在多种认知功能中发挥着重要作用,例如学习和记忆(Jarrard 1993)和空间导航(O'Keefe and Nadel 1978)。海马体也与某些病理有关。例如,在阿尔茨海默病中,海马体似乎在疾病扩散到整个大脑之前的早期阶段就受到影响。在癫痫中,颞叶通常是癫痫发作的焦点,因为与其他皮质区域相比,海马体需要的电流要少得多,才能引发癫痫样活动。此外,海马体,特别是 CA1,极易受到缺血或缺氧损伤,这使得该区域在脑血管疾病中至关重要。海马体因其特殊的结构和特性而促成了许多发现。首先,它具有相对简单有序的结构,共有四层,其中兴奋性细胞仅占据一层。不同的海马区几乎单向连接,长距离纤维与锥体细胞的主要树突轴正交传播。此外,突触具有高度的可塑性,因此它们可以根据突触前和突触后细胞的行为改变其强度。最后,神经元可以在培养物中生长,并且急性或培养的切片可以在体外存活足够长的时间以用于实验。所有这些特性使海马体成为了解大脑一般原理的便捷基准。受益于海马体实验的关键发现
海马是认知的大脑区域。人类SOX2转录因子中的突变会导致神经发育缺陷,导致智障和癫痫发作,以及海马发育不良。我们在小鼠中产生了一系列等位基因SOX2条件突变,在不同的发育阶段删除SOX2。SOX2晚期缺失(来自E11.5,通过Nestin-Cre)仅影响产后海马发育;早期的缺失(来自E10.5,EMX1-CRE)显着降低了齿状回(DG),最早的缺失(来自E9.5,FOXG1-CRE)会导致剧烈的异常,几乎完全没有DG。我们识别一组功能相互连接的基因(Gli3,Wnt3a,cxcr4,p73和tbr2),已知在海马胚胎发生中起着重要作用,在SOX2早期突变体中被下调,以及(Gli3和cxcr4)直接通过SOX2键入SOX2;它们的下调提供了导致缺陷的合理分子机制。对EMX1-CRE小鼠模型的电生理研究显示CA1和CA3区域的兴奋性传播改变了。对EMX1-CRE小鼠模型的电生理研究显示CA1和CA3区域的兴奋性传播改变了。
突触功能障碍是阿尔茨海默氏病(AD)的重要病理标志和原因。高频刺激(HFS)诱导的长期增强(LTP)已被广泛用于研究突触可塑性,发现与AD相关的LTP受损。然而,尚未完全阐明突触可塑性的确切分子机制。AD中调节突触可塑性的基因是否改变并导致疾病发作也尚不清楚。在此,我们通过将HFS施用到CA3区域,然后研究CA1区域的转录组变化,从而在野生型(WT)和AD模型小鼠的海马CA1区域中诱导LTP。我们通过筛选具有正常LTP的小鼠中HFS诱导的差异表达基因(DEG)来鉴定了可能参与正常突触可塑性的基因,而43个基因可能会通过将小鼠与正常LTP和AD AD的小鼠与吸引力的LTP进行比较而导致HFS诱导DEG的AD突触功能障碍。,我们通过筛选没有HFS诱导的病理阶段AD小鼠中表达改变的基因,进一步将43个基因提高到14个基因。中,我们发现AD患者的Pygm的表达也降低了。我们进一步证明了神经元中PYGM的下调损害了WT小鼠的突触可塑性和认知,而其过表达减弱了AD小鼠的突触功能障碍和认知缺陷。此外,我们表明PYGM直接调节神经元中的能量产生。
图 2 样本 1 中的 VLT – HsVol 关系概况和特异性。(a)与 VLT 评分相关的估计子场体积斜率的事后分析(+ 1 SD)。仅 CA1 体积斜率与 VLT 评分相关(p = .036,n = 447)。(b)CA1、CA3、CA4、DG、前下托、下托体积和 VLT 评分的散点图以及每条线性拟合线及其 95% CI。(c)与词汇测试评估的言语智力相关的估计子场体积斜率的事后分析(+ 1 SD)。没有海马子场体积与言语智力相关(n = 447)。对于(a、c),报告了 Bonferroni 校正的 CI 和 p 值。对于(a – c),海马体积的残差是通过消除与半球整个海马体积相关的方差来计算的。模型根据年龄、性别、教育程度和 eTIV 进行了调整。(d)左、右整个海马体积和 VLT 分数的散点图,以及根据年龄、年龄 2 、性别、教育程度和 eTIV 调整的线性拟合线及其 95% CI。对于(a – d),残余体积、VLT 分数和词汇分数转换为 z 分数。CI,置信区间;eTIV,估计的总颅内容量;HsVol,海马亚区体积测定;VLT,口头列表学习测试
发现和表征丝氨酸 - 硫代激酶细胞周期蛋白依赖激酶样5(CDKL5)的特定抑制剂(CDKL5)在海马CA1生理学中的作用Anna Castano*科罗拉多大学医学院,科罗拉多州Aurora,Co anna.castano and brinase ins naberatory* coinschud silgaux silveest and karga silvester*弗朗西斯·克里克研究所(Francis Crick InstituteWells Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27599, United States of America carrow.i.wells@gsk.com Jennifer L. Sanderson Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO JENNIFER.SANDERSON@CUANSCHUTZ.EDU Carla A. Ferrer结构基因组学联盟,UNC Eshelman药学院,北卡罗来纳大学,北卡罗来纳州教堂山的教堂山,27599年,美利坚合众国calafe2@hotmail.2@hotmail.com han wee ong结构性基因组联盟,北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州北卡罗莱纳州,Chapel山,Chapel 9. onghw@live.unc.unc.edu yi liang结构基因组学联盟,UNC Eshelman药学院,北卡罗来纳大学北卡罗来纳州教堂山的北卡罗来纳大学,北卡罗莱纳州教堂山,27599年,美国美国诺夫德·理查森(William Richardson)的美国诺夫尔·理查森(William Richards)医学界,美国纳菲尔德·诺夫(Oxford),美国诺夫·理查森(William Richardson) william.richardson95@outlook.com乔西·A·西尔瓦洛里(Josie A.卡罗来纳州,27599年,美利坚合众国。
