图1 AAV-2XTAU注射动物中AT8和Thios病理进展的定量3D分析。(a)本研究中执行的实验程序和纵向样本收集的摘要。(b)荧光显微照片说明了在3和6个月时实验动物的海马形成中Neun(蓝色),AT8(RED)和THIOS(绿色)的分布。tau病理的进展。(c)所检查的标记的代表性共焦图像,以量化疾病进展,以及在分析区域中通常观察到的四个典型的神经元特征:健康,prestangle,成熟的缠结和鬼缠结。(d)进行高分辨率共聚焦图像的三维重建,以识别和量化TAU病理的进展。每个神经元谱的表达:对每个分析的区域占用的3D体积(MM3)进行计算并校正:CA3/HILUS,CA1,Subiculum(sub),左ERC,左ERC和对侧ERC(E)。图形摘要显示了左右半球的AT8和Thios的分布模式以及所研究的两个时间点之间的分布模式。比例尺:200μm(b),10μm(c)。* P <0.05 ** P <0.01 *** P <0.001,双向ANOVA,Sidak的事后测试。
对于大多数人来说,随着年龄的增长,保持“精神上的敏锐”是一个很高的优先事项,这可能会因与该疾病无关的术后并发症的后果所挫败,这需要进行手术干预。围手术期神经认知障碍(PND)是手术患者认知障碍的总体术语,包括从妄想到痴呆症的疾病,每年在美国影响超过700万患者,并威胁到功能性独立性和生命。临床试验和荟萃分析已经确定了PND之间的关联与围手术水平增加的白介素-6(IL-6),这是一种多效性细胞因子,在PND的抗旋转模型中,术后记忆下降既需要且足以进行术后记忆的下降。最近,我们报道说,在大全麻醉下患有胫骨骨折的成年雄性野生型小鼠中,海马CA1神经元中的IL-6反式信号介导了手术诱导的记忆障碍。由于没有预防或逆转PND,患者及其护理人员以及医疗保健行业的治疗选择。Olamkicept是一种高度选择性的IL-6反式信号阻滞剂,在涉及炎症性肠病的患者的临床试验中已显示出有效且安全的,这是IL-6转换是介导机制的另一种情况。可以证明Olamkicept有效地预防易受伤害(老年和阿尔茨海默氏病)的临床前PND模型的认知障碍,应进行涉及老年和/或认知障碍的表演患者的临床试验,以研究Olamkicept的PNDS效用。
脑源性神经营养因子(BDNF)是神经营养蛋白家族的成员,在神经元保护和突触可塑性中起关键作用。BDNF的变化与各种病理条件有关,包括甲基苯丙胺(METH)成瘾,尽管Meth对BDNF表达的影响并不总是一致。我们先前已经证明了慢性甲基甲基化对大鼠脑中BDNF甲基化和表达的区域特异性作用。这项研究旨在确定慢性甲基施用对大鼠额叶皮层和海马中的免疫组织化学使用BDNF蛋白表达的影响。还确定了新颖的对象识别(NOR)作为认知功能的量度。雄性Sprague Dawley大鼠被施用甲基甲基或媒介物14天内的慢性升级剂量(0.1-4 mg/kg);在没有测试前一天的最后一天,还给予接受甲基苯酚的动物亚组。结果表明,海马CA1 BDNF蛋白在ED-BING大鼠中显着增加了72%,而其他海马区域和额叶皮层没有显着影响。甲基采集的动物在延迟24小时后也表现出赤字。显而易见的是,额外的暴饮暴食对BDNF蛋白或没有发现的显着影响。这一发现与我们先前的DNA甲基化降低和BDNF基因表达增加的结果一致。海马BDNF的增加可能反映出响应于谷氨酸升高而产生的保护因子的初始增加,从而导致神经退行性兴奋性。
这项研究旨在通过两种视觉闭塞(2VO)(2VO)评估单独给药中的富含血小板血浆(PRP)和神经rest衍生的表皮干细胞(ESC)的效率和治疗机制。方法。66只大鼠分为六组:对照,假,2VO +车辆,2VO + PRP,2VO + ESC和2VO + ESC + PRP。经过处理的组在第4、14和21天接受了100万个细胞,有或没有500 µL PRP(每周两次),后两次两次。通过行为测试(包括开放场,被动避免和莫里斯水迷宫)评估记忆表现和焦虑。通过CA1的领域记录评估了基础突触传播(BST)和长期增强(LTP)。通过定量逆转录聚合酶链反应,在大鼠河马中测量了IGF-1,TGF-β1,PSD-95和GSK-3β的mRNA表达水平。结果。结果表明,2VO大鼠的学习,记忆和突触可塑性受损,以及IGF-1,TGF-β1,PSD-95的表达显着降低,以及GSK-3β的上调。单独使用ESC和ESC + PRP处理在空间记忆和LTP诱导方面显示出类似的改善,并与PSD-95的上调以及GSK-3β的下调相关。但是,只有ESC + PRP组在BST中显示恢复。此外,组合疗法比PRP单药治疗LTP和记忆更有效。结论。此发现可能是ESC和PRP的合并疗法的线索。ESC的移植比单独的PRP显示出更好的影响,并且联合疗法随着BST的恢复而增加了治疗效率。
在出生后的前两周,啮齿动物的神经元内氯离子浓度逐渐下降,导致 GABA 反应从去极化转变为高极化。在神经发育障碍的啮齿动物模型和人类患者中,出生后的 GABA 转变会延迟,但 GABA 转变延迟对发育中大脑的影响仍不清楚。在这里,我们通过用氯离子输出蛋白 KCC2 的特异性抑制剂 VU0463271 处理 6 至 7 日龄小鼠的器官型海马培养物 1 周,研究了出生后 GABA 转变延迟对网络发育的直接和间接影响。我们证实了 VU 治疗延迟了 GABA 转变并使 GABA 信号去极化直到 DIV9。我们发现 VU 治疗后 DIV9 时的兴奋性和抑制性突触的结构和功能发育没有受到影响。与之前的研究一致,我们观察到 GABA 信号在对照组和 VU 处理的出生后切片中已经受到抑制。令人惊讶的是,在 VU 治疗结束 14 天后(DIV21),我们观察到 CA1 锥体细胞中自发抑制性突触后电流的频率增加,而兴奋性电流没有改变。突触数量和释放概率不受影响。我们发现,与对照切片相比,放射层中以树突为靶向的中间神经元具有升高的静息膜电位,而锥体细胞的兴奋性较低。我们的结果表明,去极化 GABA 信号不会促进 P7 后的突触形成,并表明出生后细胞内氯离子水平以细胞特异性的方式间接影响膜特性。
本研究旨在确定CA3锥体神经元中的MTOR途径及其下游效应子P70S6K是否在胆碱能输入的调节下,以触发长期记忆的形成,类似于我们在CA1 Hippocampus中所证明的。我们使用成年Wistar大鼠的降低抑制作用测试进行了体内行为实验,以评估不同条件下的记忆形成。我们研究了雷帕霉素(雷帕霉素,雷帕霉素,一种MTORC1形成的抑制剂,Scopolamine,一种毒蕈碱受体拮抗剂或麦卡米胺,一种烟碱受体拮抗剂,对短期和长期记忆形成以及MTOR途径的功能。收购是在I.C.V. 30分钟后进行的。注射雷帕霉素。采集后进行1H,4H或24H进行召回测试。我们发现(1)CA3锥体神经元中的MTOR和P70S6K激活参与了长期记忆形成。 (2)雷帕霉素在4H时显着抑制MTOR和P70S6K激活,并在获取后长期记忆障碍; (3)Scopolamine损害了短期但不长期记忆,MTOR/p70s6k在1H激活时会提前增加,然后更长的时间稳定; (4)甲基胺和scopolamine共同给药在1H和4H时损害了短期记忆,并减少了Scopolamine诱导的MTOR/P70S6K激活时1H和4H激活的增加; (5)甲基胺和东pol碱治疗不会损害长期记忆的形成; (6)出乎意料的是,雷帕霉素增加了小胶质细胞中的MTORC2激活。我们的结果表明,在CA3锥体神经元中,mTOR/ p70s6k途径在胆碱能系统的调节下,并且参与了长期记忆编码,并且与海马 div> div>的CA3区域一致
除了影响下丘脑和其他与生殖有关的脑区外,卵巢类固醇还对整个脑部、血清素通路、儿茶酚胺能神经元、基底前脑胆碱能系统以及海马结构(一个与空间记忆和陈述性记忆有关的脑区)产生广泛影响。因此,卵巢类固醇对情感状态和认知有可测量的影响,对痴呆症有影响。本综述讨论了两种作用;这两种作用似乎都涉及卵巢激素的基因组作用和非基因组作用的结合。首先,血清素系统的调节似乎与中脑缝中雌激素和孕激素敏感神经元的存在以及血清素神经元投射轴突的脑区中可能存在的非基因组作用有关。其次,卵巢激素在雌性大鼠 4 至 5 天的发情周期内调节海马 CA1 区突触的周转。雌二醇诱导新的兴奋性突触形成,涉及 N-甲基-D-天冬氨酸 (NMDA) 受体,而这些突触的下调涉及细胞内孕激素受体。一种新的快速放射免疫细胞化学方法通过标记和量化所涉及的特定突触和树突分子,使突触形成的证明成为可能。虽然 NMDA 受体激活是突触形成的必要条件,但抑制性中间神经元可能发挥关键作用,因为它们表达核雌激素受体-α (ER)。雌激素也可能局部调节突触形成的兴奋性锥体神经元中突触接触位点的事件。事实上,最近的超微结构数据显示,在海马主细胞、轴突、轴突末端和神经胶质突起上的部分树突棘内存在核外 ER 免疫反应。特别是,ER 在树突中的存在与突触形成的模型相一致,在该模型中,树突的假足长出以寻找新的突触接触,雌激素通过第二信使系统调节局部转录后事件。
第一年 - 第一学期学分 第二学期学分 CHEM 1127Q 普通化学 4 CHEM 1128Q 普通化学 4 MATH 1131Q 微积分 I 4 MATH 1132Q 微积分 II 4 ENGR 1000 工程入门 1 ENGR 1166 工程基础 3 CSE 1010 工程师计算(F/S) 3 ENVE 1000 环境可持续性(CA2) 3 ENGL 1007 学术写作研讨会 4 (1) CA 1 (____________________________) 3 总计 16 总计 17 第二年 - 第一学期 第二学期 PHYS 1501Q 工程师物理学 I 4 PHYS 1502Q 工程师物理学 II 4 MATH 2110Q 多元微积分 4 MATH 2410Q 元素微分方程 3 CE 2110 应用力学 I (F/S) 3 (2, 3) 生物或地球科学要求 3 ENVE 2310 环境工程基础 3 CHEG 2111 或 ME 2233 热力学 (F/S) 3 CE 2251 CEE 中的概率与统计 (F/S) 3 PHIL 1104 哲学与伦理 (CA1) 3 总计 17 总计 16 第三年 - 第一学期 第二学期 ENVE 3220 水质工程 3 ENVE 3230 空气污染控制 3 ENVE 4210 环境工程化学 3 ENVE 4320 生态原理与工程 3 ENVE 3201 环境工程实验室 I 1 ENVE 3202 环境工程实验室 II 1 ENVE 3120 流体力学 (F/S) 4 (2,3) 生物或地球科学要求 3 ENVE 2411 CAD 简介 1 (4) 专业选修课 3 自由选修课 3 (1) GenEd:CA 4(I) (_____________________) 3 总计 15 总计 16 第四年 – 第一学期 第二学期 ENVE 4910W 环境工程设计 I 2 ENVE 4920W 环境工程设计 II 2 ENVE 4810 工程水文学 3 ENVE 4310 环境建模 3 (4) 专业选修课 3 ENVE 4530 地质环境工程或 ENVE 4540 地下水系统设计
IGF 和 FGF 在体外协同建立多能人类细胞的调节性干细胞微环境。Sean C Bendall 1,2,3、Morag H Stewart 1,3、Pablo Menendez 1,4、Dustin George 2、Kausalia Vijayaragavan 1、Tamra Werbowetski-Ogilvie 1、Veronica Ramos-Mejia 1、Anne Rouleau 1、Jiabi Yang 1、Marc Bosse 1、Gilles Lajoie 2 和 Mickie Bhatia 1,5 1 麦克马斯特干细胞和癌症研究所,Michael G. DeGroote 医学院和麦克马斯特大学生物化学系,加拿大安大略省汉密尔顿,L8N 3Z5。2 西安大略大学舒利克医学和牙科学院生物化学系 Don Rix 蛋白质鉴定设施,加拿大安大略省伦敦,N6A 5C1; 4 现地址,西班牙干细胞库安达卢西亚分部,生物医学研究所,格拉纳达,西班牙,18100。关键词:人类胚胎干细胞、生态位、蛋白质组学、自我更新、多能性。 5 通讯地址:Mickie Bhatia 博士 麦克马斯特干细胞和癌症研究所 (SCC-RI) 麦克马斯特大学 Michael G. DeGroote 医学院 1200 Main Street West, MDCL 5029 加拿大安大略省汉密尔顿市 L8N 3Z5 电话:(905) 525-9140,x28687 电子邮件:mbhatia@mcmaster.ca 3 以下作者对这项工作做出了同等贡献 致谢:SCB 获得 CIHR 加拿大研究生奖学金博士奖的资助,MHS 获得干细胞网络研究生奖学金和 CIHR 加拿大研究生奖学金博士奖的资助,M.Bhatia 获得加拿大主席计划的资助,他是加拿大人类干细胞生物学研究主席和 Michael G. DeGroote 干细胞生物学主席。这项工作得到了安大略省研究与发展挑战基金 (ORDCF) 向 GL 提供的资助以及 CIHR 和 NCIC 向 M.Bhatia 提供的资助。我们还非常感谢 L.Gallacher 和 R. Mondeh 提供的培养帮助、罗伯茨的 Krembil 中心以及 M. Sibly 和 J. Trowbridge 提供的有益建议,以及 Andras Nagy、Janet Rossant、Marina Gertsenstein、Kristina Vinterstein、Marsha Mileikovsky 和 Jonathan Draper 提供的 CA1 人类 ESC 系。
第 28 届年度计算神经科学会议 CNS ∗ 2019 于 2019 年 7 月 13 日至 17 日在巴塞罗那举行。会议涵盖了各种各样的研究主题,欢迎来自世界各地的参与者,主题演讲包括 Ed Bullmore 教授的“大脑网络、青少年和精神分裂症”,Kenji Doya 教授的“心理模拟的神经回路”,Maria Sanchez-Vives 教授的“一个网络,多种状态:改变大脑皮层的兴奋性”,以及 Ila Fiete 教授的“灵活记忆和导航的神经回路”。本研究主题“计算神经科学进展”包含会议上介绍和讨论的一些前沿计算神经科学研究。与 CNS ∗ 2019 一样,本研究主题中的文章反映了计算神经科学研究的多样性和丰富性,从亚细胞尺度扩展到网络、从生物细节扩展到计算机技术、从计算方法扩展到大脑理论。在亚神经元层面,在“ROOTS:一种生成生物学上真实的皮质轴突的算法及其在电化学建模中的应用”中,Bingham 等人开发了用于构建更精确计算模型的计算方法,扩展了生成方法生成高度分支的皮质轴突末端树突的神经元形态的能力。在类似的领域,在“血清素轴突作为分数布朗运动路径:对区域密度自组织的洞察”中,Janušonis 等人描述了基于反射分数布朗运动的计算模型如何生成稳态分布,以近似于实验观察到的物理脑切片中的血清素纤维分布。 Gontier 和 Pfister 在《二项式突触的可识别性》一文中扩展了模型原理,引入了统计模型在实际中可识别的定义,并将这一概念应用于突触模型。Felton 等人在《评估 Ih 电导对模型锥体神经元中跨频耦合的影响》一文中分析了超极化激活混合阳离子电流 (Ih) 在跨频耦合动态现象中的作用。同样,Mergenthal 等人在《胆碱能调节 CA1 锥体细胞活动的计算模型》中提出了一种锥体细胞计算模型,其中包含前所未有的细节
