2025年2月24日,圣文森特学院举办了宾夕法尼亚州Latrobe的QCAMP会议 - 圣文森特学院被选为为期一周的QCAMP(量子,计算,数学和物理)夏季课程的偏远网站。营地将每天上午11:30至下午6:30进行。 6月16日至20日在圣文森特校园。会议不需要费用,将提供早餐和午餐。申请截止日期为4月14日。要注册,请访问www.quantumsystemsaccelerator.org/qcamp。随着匹兹堡地区继续通过拥抱尖端技术来重塑自己,教师需要在教室中翻译量子概念。QCAMP帮助教师掌握量子计算和量子物理学的基本原理,并了解如何将这些原理应用于其课程。教师将发现在入门级别及以后教授和探索量子力学的引人入胜的方法,为课程计划获取资源,并探索有关量子力学如何改变社会的讨论点。QCAMP是通过新墨西哥州阿尔伯克基的S Andia国家实验室以及包括劳伦斯·伯克利国家实验室和量子系统加速器在内的一组合作伙伴,这是美国能源部五个国家量子信息科学研究中心之一。
CRISPR-CAS9基因编辑正在作为基因组突变的前瞻性疗法出现。但是,当前的编辑方法主要针对具有特异性突变的患者的相对较小的人群。在这里,我们描述了一种可能适用于多种心脏病患者的心脏保护策略。我们使用基础编辑来消除心脏病的主要驱动因素Camkiiδ的氧化激活位点。我们在源自人类诱导的多能干细胞的心肌细胞中显示,这些干细胞编辑了CAMKIIδ基因以消除氧化 - 敏感的蛋氨酸残基赋予保护免受缺血/再灌注(IR)损伤的保护。此外,在IR时,CAMKIIΔ编辑使心脏从其他严重的损害中恢复功能。CAMKIIδ基因编辑可能代表心脏病治疗的永久和晚期策略。
CRISPR-Cas9 基因编辑正在成为一种有前途的基因组突变疗法。然而,目前的编辑方法主要针对的是具有特定突变的相对较小的患者群体。在这里,我们描述了一种可能适用于广泛心脏病患者的心脏保护策略。我们使用碱基编辑来消融 CaMKII δ 的氧化活化位点,这是心脏病的主要驱动因素。我们在源自人类诱导多能干细胞的心肌细胞中表明,编辑 CaMKII δ 基因以消除氧化敏感的蛋氨酸残基可保护心肌免受缺血/再灌注 (IR) 损伤。此外,在小鼠 IR 时进行 CaMKII δ 编辑可使心脏从严重损伤中恢复功能。因此,CaMKII δ 基因编辑可能代表一种永久且先进的心脏病治疗策略。
研究文章|疾病TRPM2和CAMKII信号传导的神经生物学驱动驱动过多的GABA能突触抑制https://doi.org/10.1523/jneurosci.1762-23.2024收到:2023年9月22日,2024年3月13日接受:2024年3月18日接受:
引言心血管疾病,特别是冠状动脉心脏病及随后的心肌梗死,是全世界最常见的死亡原因,这凸显了先进治疗策略的必要性 (1)。已证实 Ca 2+ /钙调蛋白依赖性蛋白激酶 II δ (CaMKII δ ) 的慢性过度激活是心脏病的主要指标和诱因 (2–10)。在调节细胞稳态和信号传导至正常激活水平的同时,持续增加的 CaMKII δ 激活与兴奋-收缩偶联受损、细胞 Ca 2+ 处理紊乱、炎症、细胞凋亡和纤维化有关,所有这些都会损害心脏功能 (2、4、5、8–14)。因此,CaMKII δ 过度激活与心肌梗死和缺血/再灌注 (IR) 损伤、心力衰竭、心律失常、心脏肥大和睡眠呼吸障碍有关 (2、3、6-11、15、16)。从机制上讲,281 和 282 位上的 2 个蛋氨酸残基的氧化已被证明
引言心血管疾病,特别是冠状动脉心脏病及随后的心肌梗死,是全世界最常见的死亡原因,这凸显了先进治疗策略的必要性 (1)。已证实 Ca 2+ /钙调蛋白依赖性蛋白激酶 II δ (CaMKII δ ) 的慢性过度激活是心脏病的主要指标和诱因 (2–10)。在调节细胞稳态和信号传导至正常激活水平的同时,持续增加的 CaMKII δ 激活与兴奋-收缩偶联受损、细胞 Ca 2+ 处理紊乱、炎症、细胞凋亡和纤维化有关,所有这些都会损害心脏功能 (2、4、5、8–14)。因此,CaMKII δ 过度激活与心肌梗死和缺血/再灌注 (IR) 损伤、心力衰竭、心律失常、心脏肥大和睡眠呼吸障碍有关 (2、3、6-11、15、16)。从机制上讲,281 和 282 位上的 2 个蛋氨酸残基的氧化已被证明
摘要 — 量子信息科学与技术领域尚处于起步阶段,但发展迅速,导致对熟练量子工作者的需求增加,并有机会从一开始就建立多元化的劳动力队伍。为了满足这一需求并鼓励 STEM 领域的女性和代表性不足的少数群体考虑从事 QIST 职业,我们开发了一门课程,向高中阶段的教师和学生介绍量子计算,无需任何先决条件。2022 年,该课程在两个为期一周的夏令营中讲授,一个针对教师,另一个针对学生。在这里,我们概述了目标、课程和活动,以及对两个夏令营的正式评估结果和未来几年扩大 QCaMP 的前景。索引词 — 量子信息科学与技术、量子教育、量子推广
目前,双相情感障碍的药物治疗效果不佳,而且是基于偶然发现的药物,这些药物通常疗效有限、副作用大、作用机制不明。治疗双相情感障碍的药物开发进展缓慢,主要来自对用于其他精神疾病的药物的重新利用,这种策略未能找到真正革命性的治疗方法,因为它没有针对该疾病特有的情绪不稳定。双相情感障碍领域治疗创新的缺乏主要是由于对潜在疾病机制的理解不足以及因此缺乏经过验证的药物靶点。一个引人注目的新治疗靶点是 Ca 2 + -钙调蛋白依赖性蛋白激酶激酶 2 (CaMKK2) 酶。CaMKK2 在脑神经元中高度富集,调节能量代谢和神经过程,这些过程是长期记忆、情绪和其他情感功能等高级功能的基础。人类 CAMKK2 的功能丧失多态性和罕见的错义突变与躁郁症有关,而小鼠中 Camkk2 的基因缺失会导致与患者相似的躁郁症样行为。此外,锂可改善这些行为,因为锂可增加 CaMKK2 活性。在这篇综述中,我们讨论了多种趋同的证据,这些证据支持以 CaMKK2 为靶点作为躁郁症的新治疗策略。
氧化物异质结构中的界面电荷转移产生了丰富的电子和磁现象。设计异质结构,其中一个薄膜成分表现出金属-绝缘体转变,为静态和动态控制此类现象开辟了一条有希望的途径。在这项工作中,我们结合深度分辨的软 x 射线驻波和硬 x 射线光电子能谱以及偏振相关的 x 射线吸收光谱,研究了 LaNiO 3 中的金属-绝缘体转变对 LaNiO 3 /CaMnO 3 界面处电子和磁态的影响。我们报告了在金属超晶格中直接观察到的界面 Mn 阳离子的有效价态降低,该超晶格具有高于临界的 LaNiO 3 厚度(6 个晶胞,uc),这是由流动的 Ni 3 deg 电子向界面 CaMnO 3 层中的电荷转移促成的。相反,在厚度低于临界值 2u.c. 的 LaNiO 3 绝缘超晶格中,由于界面电荷传输受阻,整个 CaMnO 3 层中观察到 Mn 的有效价态均匀。切换和调节界面电荷传输的能力使得能够精确控制 LaNiO 3 /CaMnO 3 界面上出现的铁磁状态,因此对下一代自旋电子器件的未来设计策略具有深远的影响。