操作系统Windows 11 IoT Enterprise CPUIntel®Core™Ultra 5处理器125H最大。4.5GHz with Intel ® Turbo Boost Technology - 18MB Intel ® Smart Cache Memory & Storage 8GB DDR5 Optional: 16GB / 32GB DDR5 1 st storage: 256GB PCIe NVMe SSD Optional: 512GB / 1TB / 2TB PCIe NVMe SSD 2 nd storage: 256GB PCIe NVMe SSD Optional: 512GB / 1TB / 2TB PCIE NVME SSD GPUINTEL®ARC™图形NPUINTEL®AIAI增强I / O接口POE(对以太网的功率,Ethernet,PSE)x 6 LAN(RJ45,2.5GBPS) X1音频在jack(电源和点火开关)中x1音频x 1 dc x 1 usb 2.0 type-a x 1 USB 3.1 Gen 2 type-a x 2 type-a x 2 USB 4 gen2x2 type-C type-c x 1 gpio端口(输入x 8,输出x 4,12V/1a power x 2) 10/100/1000 base-t以太网2.5GBASE-T以太网Intel®Wi-Fi 7 BE202,802.11BE蓝牙(v5.4)
2理论3 2.1测量预取效率。。。。。。。。。。。。。。。。。。。3 2.2预取技术。。。。。。。。。。。。。。。。。。。。。。。。。5 2.2.1软件预取。。。。。。。。。。。。。。。。。。。。。。6 2.2.2一个块lookahead预摘要。。。。。。。。。。。。。。6 2.2.3参考预测表预取。。。。。。。。。。。。7 2.2.4基于GHB的预取。。。。。。。。。。。。。。。。。。。。8 2.2.5目标线预取。。。。。。。。。。。。。。。。。。。。。9 2.2.6错误的路径预取。。。。。。。。。。。。。。。。。。。。9 2.2.7内容有向预取。。。。。。。。。。。。。。。。。9 2.2.8数据预取控制器预取。。。。。。。。。。。。。10 2.3预取问题。。。。。。。。。。。。。。。。。。。。。。。10 2.3.1缓存污染。。。。。。。。。。。。。。。。。。。。。。。。。10 2.3.2区域。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。11 2.3.3增加内存曲线和力量。。。。。。。。。。。。。11 2.4预取替代方案。。。。。。。。。。。。。。。。。。。。。。。11
多模式大型语言模型(MLLM)在视觉教学调整中取得了显着的成功,但由于大型语言模型(LLM)骨干的自动回归解码,它们的推论既耗时又耗时。传统的加速推理方法,包括模型压缩和从语言模型加速的迁移,通常会损害输出质量或有效整合多模式特征的face Challenges。为了解决这些问题,我们提出了AASD,这是一个新型的框架,用于加速使用精制的KV缓存并在MLLM中对准投机解码。我们的方法利用目标模型的缓存键值(KV)对提取生成草稿令牌的重要信息,从而有效地投机解码。为了减少与长多模式令牌序列相关的计算负担,我们会引入KV投影仪,以压缩KV缓存,同时保持代表性保真度。此外,我们设计了一种目标放射线注意机制,以优化草稿和目标模型之间的对齐方式,从而以最小的计算开销来实现真实推理情景的好处。主流MLLM的广泛实验表明,我们的方法在不牺牲准确性的情况下达到了2倍推理的速度。这项研究不仅为加速MLLM推断提供了有效且轻巧的解决方案,而且还引入了一种新颖的对齐策略,用于在多模式背景下进行投机解码,从而为未来的有效MLLM研究奠定了强大的基础。代码可在https://anonymon.4open.science/r/asd-f571上使用。
摘要 - 随着云服务,智能设备和IoT设备的使用指数级增长,高级网络攻击变得越来越复杂且无处不在。此外,计算体系结构和内存技术的快速演变已经迫切需要理解和适应硬件安全性漏洞。在本文中,我们回顾了当代计算系统中漏洞和缓解策略的当前状态。我们讨论缓存侧通道攻击(包括幽灵和崩溃),功率侧渠道攻击(例如简单功率分析,差异功率肛门,相关功率分析和模板攻击)以及电压毛病和电磁分析等先进技术,以帮助了解和建立强大的网络环境辩护系统和建立强大的网络抗性辩护系统。我们还研究记忆加密,重点是指示性,粒度,密钥管理,掩盖和重新接键策略。此外,我们涵盖了加密指导集架构,安全启动,信任机制的根,物理无统治功能和硬件故障注入技术。本文以对RISC-V架构独特的安全挑战的分析结束。本文提供的综合分析对于建立有弹性的硬件安全解决方案至关重要,这些解决方案可以在越来越具有挑战性的安全环境中保护当前和新兴的威胁。索引术语 - 硬件安全性,网络安全性,缓存侧通道,加密指令集扩展,故障输入,内存加密,电源分析攻击,RISC-V,安全启动,侧通道耐药设计,投机性执行
多项微控制器体系结构概念概念概念说明多项架构 - 均匀 /异质性多核心体系结构,具有共享内存和 /或非共享存储器软件方面,可用于多层处理核心核心接口和内存: (1级内存),全局/共享SRAM(级别2内存),snoop逻辑(高速缓存连贯) - 命令吞吐量(MIPS)的要求 - 核心同步 - coprifiseor功能 - 新的核心总线系统(New Core Bus Systems(CrossBar) - 信号量信号器 - 存储器控制 - 访问控制(Access Protection) - 多重点中断处理 - 元素启动和初始化:启动过程,主和辅助CPU插头接口的设置
一种基于低功耗改进型 PPN SRAM 单元的存储器阵列的新型设计及其对高速缓存存储器的分析评论 Gavaskar K、Surendar N、Thrisali S、Vishal M 电子与通信工程系 Kongu 工程学院 Perundurai,Erode – 638060,泰米尔纳德邦,印度。邮件 ID:gavas.20@gmail.com 摘要 – 高速缓存存储器是存储重复数据和执行操作的指令所必需的存储空间。现代处理器的速度已经显著提高,但存储器增强主要集中于在更小的空间中存储更多数据并减少延迟的能力。本文提出的基于 PNN 反相器的 10 T SRAM 单元电路由 2 个交叉耦合的 PNN 反相器(1 个 PMOS 和 2 个 NMOS 晶体管)、单端独立读取电路(2 个 NMOS 晶体管)和 2 个存取晶体管(2 个 NMOS)组成。将不同的漏电流控制技术(如 LECTOR 和 KLECTOR)应用于 10T PPN 和 10T PNN SRAM 单元以提高其保持性能,并比较其结果。8X8 存储器阵列由存储器单元、行和列解码器、预充电电路、感测放大器和写入驱动器电路组成。测量了读取、写入和保持操作的各种参数(如延迟、动态功率、功率延迟积、漏功率和静态噪声裕度),并与其他 SRAM 单元进行了比较。CADENCE Virtuoso Tool 用于设计 90 nm 技术中的各种电路。模拟结果表明,与其他单元相比,所提出的 SRAM 单元具有更好的性能,因此它可用于创建阵列结构。与其他阵列结构相比,基于 8X8 10T PNN SRAM 单元的阵列具有更低的功率和更少的延迟。
Donald F. Hooper Don Hooper 是逻辑设计和 CAD 领域的咨询工程师。他发起并领导了“综合设计”程序的开发,这是 Digital 的第一个综合工具。在 1979 年加入 Digital 之前,他是 Itel 7031 大型机的架构师和 !tel Advanced System 4 的缓存设计师。他毕业于 Don Bosco 技术学院。Don 拥有语音识别电路、Digital 第一个流水线 CPU 的标签和排队系统以及 VAX 8600 系统的控制存储管道的专利。此外,他在逻辑综合方面还有几项专利正在申请中。
研究区域的岩石主要在SɵkineTerrane(SɵKinia)中,这是一种古生代到中生代岛弧,在最新的三叠纪到早期的侏罗纪,然后在中间侏罗纪的北美占领之前变形。最新的三叠纪至早期的侏罗纪褶皱与岩浆和沉积的裂缝相同,至少跨度为30 m.y。(图1)。这种畸形在整个哥伦比亚西北部的哥伦比亚西北部记录下来,已被归结为育空 - 塔纳纳和sɵkineTerranes之间的碰撞(Nelson等,2022)。随后在北美祖先的地面上,由地图区域的北部侏罗纪褶皱带记录了,其中包括两个区域北倾式推力,鲑鱼国王鲑鱼和Kehlechoa断层。在国王鲑鱼断层的悬挂墙中是Cache Creek Terrane的岩石,它代表了上部细分区域蛇片,Mafim and BimodalPrimiɵve-coceanic Arc的连续相连,海洋岛屿型基板,以及schiairizza,schiairizza,2012年;白马槽的单位,它代表了最新的三叠纪至侏罗纪早期的同步重叠组合。向南稍稍稍微向南,白马虽然在Kehlechoa断层的悬挂墙中的单位在结构上与SɵKinia并列。
摘要 —本文重点介绍相似性缓存系统,其中用户对不在缓存中的对象 𝑜 的请求可以通过存储的相似对象 𝑜 ′ 来(部分)满足,但代价是用户效用的损失。相似性缓存系统可有效地用于多个应用领域,如多媒体检索、推荐系统、基因组研究和机器学习训练/服务。然而,尽管它们具有相关性,但人们对此类系统的行为还远未得到很好的理解。在本文中,我们首次全面分析了离线、对抗和随机设置中的相似性缓存。我们表明相似性缓存带来了重大的新挑战,为此我们提出了第一个具有一些最优性保证的动态策略。我们在合成和真实请求跟踪下评估了我们方案的性能。
单元数系统系统:二进制,八进制,十六进制,从一个碱基到另一个碱基的转换,二进制算术,未签名的二进制数,签名的幅度数,2的补体表示,2的补充算术。ASCII代码,BCD代码,EBCDIC代码,多余的代码和灰色代码。算术电路:加法器,减法器,二进制乘数和分隔线。单元II逻辑门:不,或,或,或,或,或,或者,或者,nor,ex-Or和ex-nor Gates,二极管和晶体管作为开关。 布尔代数:布尔代数的定律,逻辑大门,使用k-映射对布尔方程的简化。 单元III组合电路:多路复用器,弹能器及其用作逻辑元素,解码器。 加法器/字样。 编码器,解码器触发器:S-R- J-K。 T. D,时钟的触发器,围绕状态竞争,主人触发器。 单元IV位移登记册:串行串行,并行序列,并行串行和平行 - 外向,双向移位寄存器。 计数器:异步和同步戒指计数器和约翰逊计数器,Tristate Logic。 a/d和d/a转换器:采样并保持电路。 单元-V内存:内存单元格,主内存 - RAM,ROM,PROM,EPROM,EPROM,EEPROM,CACHE内存,闪存存储器,DDR,DDR,辅助内存及其类型,物理内存和虚拟内存的介绍,内存访问方法:串行和随机访问。 教科书:数字原理和应用,Malvino&Leach,McGraw Hill。 数字集成电子产品,Taub&Schilling,MGH Thomas C Bartee,数字计算机基础,MacGrawhill参考:R.P.单元II逻辑门:不,或,或,或,或,或,或者,或者,nor,ex-Or和ex-nor Gates,二极管和晶体管作为开关。布尔代数:布尔代数的定律,逻辑大门,使用k-映射对布尔方程的简化。单元III组合电路:多路复用器,弹能器及其用作逻辑元素,解码器。加法器/字样。编码器,解码器触发器:S-R- J-K。 T. D,时钟的触发器,围绕状态竞争,主人触发器。单元IV位移登记册:串行串行,并行序列,并行串行和平行 - 外向,双向移位寄存器。计数器:异步和同步戒指计数器和约翰逊计数器,Tristate Logic。a/d和d/a转换器:采样并保持电路。单元-V内存:内存单元格,主内存 - RAM,ROM,PROM,EPROM,EPROM,EEPROM,CACHE内存,闪存存储器,DDR,DDR,辅助内存及其类型,物理内存和虚拟内存的介绍,内存访问方法:串行和随机访问。教科书:数字原理和应用,Malvino&Leach,McGraw Hill。数字集成电子产品,Taub&Schilling,MGH Thomas C Bartee,数字计算机基础,MacGrawhill参考:R.P.Jain,数字电子产品,麦格劳山莫里斯·马诺(McGraw Hill Morris Mano),数字设计,Phi Gothmann,数字电子,Phi Tocci,数字系统原理和应用,Pearson Education Asia Asia Asia Donald D Givone,数字原理和设计,TMH
