摘要:镰刀菌疫病(FHB)和镰刀冠腐烂(FCR)由咪唑杀真菌剂的应用管理,如欧洲绿色交易所述,这些杀菌剂将在2030年受到严格限制。在这里,通过遵循循环经济的原理,提出了一种新颖和生态可持续的纳米结构颗粒制剂(NPF)。纤维素纳米晶体(CNC)和抗性淀粉是从高淀粉(HA)面包小麦的麸皮中获得的,并用作载体和赋形剂,而壳聚糖和长石酸则作为抗真菌和抗真菌和INICITOTITRITITITOR主动原理功能化。NPF抑制了分生孢子发芽和菌丝体的生长,并与分生孢子机械相互作用。NPF在易感面包小麦基因型中最佳降低了FHB和FCR症状,同时在植物上具有生物相容性。The expression level of 21 genes involved in the induction of innate immunity was investigated in Sumai3 (FHB resistant) Cadenza (susceptible) and Cadenza SBEIIa (a mutant characterized by high-amylose starch content) and most of them were up-regulated in Cadenza SBEIIa spikes treated with the NPF, indicating that this genotype may possess an interesting genomic background particularly对诱导剂样分子的反应。量化表明NPF控制的FHB扩散,而Cadenza Sbeiia对FCR真菌扩散具有抗性。目前的研究工作强调,NPF是FHB可持续管理的强大武器,而Cadenza Sbeiia的基因组应深入研究,因为对类似Esicor的分子和对FCR真菌差的耐药性特别敏感。
Cadenza Innovation提供安全可靠的备用电源系统,适用于学校,图书馆和企业中的大多数IT设施。Cadence系列UPS启用可配置的产品选项,以符合客户需求并随着站点资产的扩展而增长。Cadenza将创新的安全设计与锂离子电池技术的负担得起的优势相结合,并提供具有出色性能的UPS产品,可确保关键系统基础设施功能和关键数据保护。安装了Cadence Ups,与Legacy Lead Acid Technology相比,总拥有成本大大降低,因为较长的电池寿命可实现2-3倍的使用寿命。
CRISPR/Cas 技术近期已成为植物基因功能研究和作物改良的首选分子工具。小麦是一种全球重要的主粮作物,其基因组已被充分注释,使用基因组编辑技术(如 CRISPR/Cas)有很大空间改善其重要的农业性状。作为本研究的一部分,我们针对六倍体小麦 Triticum aestivum 中的三个不同基因:春季品种 Cadenza 中的 TaBAK1-2 以及冬季品种 Cezanne、Goncourt 和 Prevert 中的 Ta- eIF4E 和 Ta-eIF(iso)4E。已成功生成所有目标基因的携带 CRISPR/Cas 诱导的插入/缺失的原代转基因系。由于冬小麦品种通常不太适合遗传转化,本研究中介绍的冬小麦转化和基因组编辑的成功实验方法将引起研究该作物的研究界的兴趣。
摘要:CRISPR/CAS技术最近已成为植物中基因功能研究以及作物改善的基因功能研究的分子工具。小麦是具有良好注释基因组的全球重要主食作物,并且使用基因组编辑技术(例如CRISPR/CAS)有足够的范围来改善其在农业上重要的特征。作为本研究的一部分,我们针对了六叶小麦小麦的三种不同基因:春季品种卡登扎的tabak1-2以及冬季品种CEZANNE,GONCOURT和PREPERT的TA-EIF4E和TA-EIF4E和TA-EIF4E和TA-EIF(ISO)4E。携带CRISPR/CAS诱导的indels的主要转基因线成功地为所有靶向基因生成。虽然BAK1是植物免疫和发育的重要调节剂,但TA-EIF4E和TA-EIF(ISO)4E的作用是Potyviridae家族所需的植物病毒所需的易感性(S)因素,才能完成其生命周期。我们预计由此产生的纯合TABAK1-2突变线将有助于研究Bak1参与小麦的免疫反应,而Ta-Eif4e和Ta-eif(ISO)4E突变线有可能成为对小麦跨度摩西(Wsoic of wirs of wire of wirs of wirs)的潜力小麦。由于冬小麦品种通常不太适合遗传转化,因此在本研究中提出的冬小麦中转化和基因组编辑的成功实验方法将使研究社区感兴趣。
