研究人员得出了计算关键量子信息量的公式,包括纠缠熵(量化了纠缠系统的纠缠方式),相互信息(测量系统的两个部分之间的共享信息)和相对熵(量化量的差异)。这些数量对于了解量子系统的不同部分如何相互作用和影响彼此至关重要。
肿胀潜力和肿胀压力计算方法:全面评论Hawkar Ibrahim 1*,Rizgar Hummadi 2 1,2土木工程系,工程学院,萨拉哈丁大学 - 大学 - 欧比尔,44002 ERBIL,伊拉克库尔德斯坦地区; hawkar.ibrahim@su.edu.krd(H.I.)rizgar.hummadi@su.edu.krd(R.H.)。摘要:膨胀的土壤,其特征是由于水含量的变化而导致体积变化,严重影响了岩土工程。适当评估肿胀潜力和肿胀压力对于改善膨胀土壤的基础设计至关重要,从而降低了土壤膨胀引起的风险。已经开发了用于测量和计算肿胀潜力和肿胀压力的不同方法,从经验到分析方法,其中许多基于实验室测试和土壤特性的分析。本文介绍了这些方法的新分类,将其分为定性,半质量和定量方法。间接分类方法是定性和半质量方法,可以是单个或多指数方法。相比之下,定量方法是基于实验室或现场测试结果的直接方法。本综述将为研究人员和工程师提供使用各种方法对膨胀土壤的扩张潜力的简单评估。关键字:经验方法,膨胀的粘土,肿胀的潜力,肿胀压力。1。简介
CALPHAD 是 Larry Kaufman 于 1970 年提出的一种方法,可能是最早将物理建模与数据学习相结合的方法之一,用于通过相图数字化材料热力学,相图是在不同外部条件下相分布的图形表示 [ 1 , 2 , 3 ]。CALPHAD 工作流程大致可分为以下几个部分:数据捕获、热力学模型的构建、通过更新待定参数优化模型、数据库生成和应用于许多案例,例如:相稳定性预测 [ 4 , 5 ]、相场建模 [ 6 , 7 ]、沉淀模拟 [ 8 , 9 ] 等。然而,当前的 CALPHAD 面临几个挑战:首先,缺乏高质量的数据;其次,常用的热力学模型简单但不太稳健;第三,由于多源数据可能存在不一致,很难自动确定最优建模,而且会产生大量的伪影。
AI-PDET 的第三页包括 MDT 中三个真实公路项目案例(图 4)。第一个项目被归类为“杂项”,第二个项目被归类为“自行车和行人”,第三个项目是“桥梁建设”工作类型。所有项目均于 2019 年开始。工作表中提供了每个项目的实际收费天数,以帮助用户将其与 AI-PDET 预测的项目工期进行比较。每个项目都提供了主要工作项的数量及其适当的单位。当用户获取提供的输入值并将其输入到 AI-PDET 的第二张工作表中时,用户可以在右侧看到预测的项目工期,并将其与项目的实际工期进行比较。
输入会员的每月总收入(如果会员的每月总收入等于或低于 1 人团体联邦贫困线的 100% [MEH 39.5],则跳过第 2-9 行并在第 10 行输入“0”)。
摘要:在本报告中,描述了为芬兰 - 瑞典冰类规则的船体部分开发直接计算方法替代方法的最终部分。在早期部分中开发的验收标准已完善其最终形式,并编写了规则草案。进行了一个示例弓的分析,以确保以前项目中平行的中体区域研究的方法适用于船体的形状区域。弓和中体之间的两个主要区别是弓上较高的冰负荷,以及形状的船体几何形状。结果表明,所提出的方法适用于棱柱形和形状的船体区域,并且结果之间没有显着差异。除了弓分析外,还进行了一些较早的分析,并进行了几个小的其他分析,以回答班级社会对规则提案的审查期间出现的问题。已将当前项目和先前项目的结果集在一起,从这些项目中,根据与Traficom一致的原则,已经制定了新规则的设计负载。使用这三个项目的知识基础,编写了新规则草案,以使用FSICR的直接计算方法。该规则草案已提交给分类社会,以根据收到的评论进行评论,更新和完善,并被认为可以使用。
D.AntonioGarcíaMartínez。de Sevilla大学 - construccionesarquitectónicasi deto。Bernardette Soust Soust verdaguer。otro个人de la us-教授Colaborador外部D. CarlosRodríguezCampos。Institución没有大学 - 梅斯管理服务SA D. JuanCarlosGómezDeCózar。de Sevilla大学 - construccionesarquitectónicasi deto。MaríaBelénReyAlvarez。 otro个人de la us-教授colaborador外部DTO。 Milagrosa BorralloJiménez。 de Sevilla大学-ConderccionesarquitectónicasiMaríaBelénReyAlvarez。otro个人de la us-教授colaborador外部DTO。Milagrosa BorralloJiménez。de Sevilla大学-Conderccionesarquitectónicasi
EPBD 包括设定评估边界和计算一次能源的主要定义和原则。以下定义构成了 EPBD 中一次能源指标计算的起点:• 第 2 条定义 53“评估边界”是指测量或计算输送和输出能源的边界;1• 定义 58“能源使用”是指输入到提供 EPB 服务的建筑技术系统的能源,旨在满足能源需求;• 定义 62“输送能源”是指按能源载体表示的、通过评估边界供应给建筑技术系统以满足考虑的用途或生产输出能源的能源;• 定义 63“输出能源”是指按能源载体和一次能源因子表示的、输出到电网而不是在现场自用或其他现场用途的可再生能源的比例;
虽然首次提出模拟自然界量子力学的建议可以追溯到理查德·费曼 [1],但最近将量子信息理论应用于高能物理系统研究的尝试已证明特别成功。量子态断层扫描就是一个典型的例子,该过程通过对被观察系统的相同副本集合进行一系列互补测量,可以完全重建系统的密度矩阵 [2],非常适用于产生大量事件的对撞机 [3-6],并且已应用于各种高能粒子物理系统的数值模拟研究 [4-7]。包括量子机器学习技术在内的量子算法已被开发用于识别数据中的标准模型及以上特征 [8-10],以及以更经济的计算方式模拟对撞机事件 [11]。