国家检测和校准实验室认可委员会 文件编号:NABL 112B 指导文件:医学实验室 发行编号:01 发行日期:2024 年 12 月 18 日 修订编号:-- 修订日期:-- 页码:第 10 页,共 43 页
国家测试和校准实验室的国家认证委员会文档。no:NABL 112A医疗实验室认证的具体标准编号:01发行日期:18-DEC-2024 AMEND NO NO: - 修订日期: - 第108页:10 of 108
准确校准高纯晶也(HPGE)检测器对于在各种科学和工业应用中精确测量γ辐射至关重要。在本文中,对HPGE探测器的校准进行了研究,从能量,分辨率和效率方面进行了研究。校准源(例如Europium-152和133)用于建立能力和分辨率校准,结果显示出高线性和令人满意的分辨率性能。效率校准最初覆盖了1.4 meV的能量,通过包括及时的γ射线测量值扩展到7.65 MeV。使用六阶多项式方程对效率数据进行建模,这与观察到的值很好地一致。这项研究证实,提示γ测量值可以有效地将HPGE检测器的校准范围扩展到更高的能量。但是,它还强调了需要改进的实验设置和更长的测量时间,以进一步提高高能量效率校准的准确性和可靠性。结果为准确的γ射线测量提供了坚实的基础。
社会情报对于了解复杂的人类表达和社会影响至关重要。虽然大型的多模型模型(LMM)在社会智能问题答案中表现出了显着的表现(SIQA),但由于在预训练阶段中基于文本的数据的独立流行,它们仍然倾向于产生依靠语言先验的回答,并依靠相关上下文。要解释LMM的上述语言偏见,我们采用了一个结构的因果模型,并认为反事实推理可以通过避免LMMS内部常识知识与给定的结论之间的虚假相关性来减轻偏见。但是,构建多模式反事实样本是昂贵且具有挑战性的。为了应对上述挑战,我们提出了一个输出d Istribution c校准网络,该网络具有v irtual c-osunterfactual(dcvc)数据。DCVC设计了一个新颖的外部分配校准网络,以减轻负面语言偏见的影响,同时保留有益的先验。扰动被引入LMMS的输出分布,以模拟从上下文中的分布的分布转移,该分布被用来构建相反的aug augs数据。在多个数据集上进行的实验证明了我们提出的方法的有效性和可实现性。
摘要 - 事件摄像机和常规框架摄像机的融合是一个新颖的研究场,由事件摄像头和框架摄像头组成的立体声结构可以结合两者的优势。本文为事件框架立体声摄像机系统开发了动态校准框架。在此框架中,第一个步骤是在圆网校准模式上完成初始检测,并提出了滑动窗口时间匹配方法以匹配事件框架对。然后,为两个摄像机设计了一种重新填充方法,以获取模式的准确信息。尤其是对于事件摄像机,具有较高计算效率的斑块大小运动补偿方法旨在实现扭曲事件图像中两个摄像机和拟合圆的时间同步。最后,通过构造具有两种类型边缘的姿势地标图,两个相机之间的姿势在全局优化了全局优化。所提出的校准框架具有高实时性能和易于部署的优点,并且通过基于自记录的数据集进行了实验来验证其有效性。本文的代码发布于:http://github.com/rayhu95/efsc calib。
抽象的手眼校准是基于视觉机器人系统的基本任务,通常配备协作机器人,尤其是对于中小型企业(中小型企业)的机器人应用。大多数手眼校准方法都取决于外部标记或人类援助。我们提出了一种新的方法,该方法可以使用机器人基础作为参考来解决手眼校准问题,从而消除了对外部校准对象或人类干预的需求。使用机器人底座的点云,从相机的坐标框架到机器人底座的转换矩阵被确定为“ i = axb”。为此,我们利用基于学习的3D检测和注册算法来估计机器人基础的位置和方向。该方法的鲁棒性和准确性是通过基于基础真实性的评估来量化的,并且将精度结果与其他基于3D视觉的校准方法进行了比较。为了评估我们的方法论的可行性,我们在不同的关节构造和实验组中使用了低成本结构化的轻扫描仪进行了实验。根据实验结果,提出的手眼校准方法达到了0.930 mm的翻译偏差,旋转偏差为0.265度。此外,3D重建实验表明旋转误差为0.994度,位置误差为1.697 mm。此外,我们的方法提供了在1秒内完成的潜力,这是与其他3D手眼校准方法相比最快的。相关代码在https://github.com/leihui6/lrbo上发布。我们根据手眼校准方法进行室内3D重建和机器人抓握实验。
摘要 - LiDar-Camera校准在自主驾驶中起着至关重要的作用。然而,操作诱导的因素(例如物理振动和温度变化)降低了部署前校准精度,从而导致了环境感知性能恶化。最近的重新校准方法通过利用LiDAR和相机的相对属性,在没有目标板的情况下实现了在线校准。尽管如此,我们还是为LIDAR-CAMERA在线校准提供了一个新颖的框架,该框架采用了变压器网络来学习相机与激光雷达传感器之间的重要相互作用。此外,我们的新型框架设计通过利用两个传感器之间的对应点信息来促进有效的校准。这允许利用全球空间上下文,并通过整合跨模态的信息来实现高性能。实验结果表明,与最先进的基准相比,我们的方法证明了表现出色的性能。
2016 年末,阿勒颇东部落入俄罗斯支持的叙利亚军队手中,朝鲜再次开始加强核试验,遥控飞机 (RPA) 袭击次数最多的一年也结束了。所有这些飞行小时数带来了空中情报、监视和侦察 (ISR) 的上升,导致硬盘溢出,其中包含数百万小时的视频和无数高分辨率静态图像,这些图像被上传到美国空军分布式通用地面系统。1 然而,如果没有图像分析师的处理、利用和分发 (PED),所有这些数据都毫无意义。PED 确保图像质量高,并且感兴趣的对象具有位置、材料、大小和背景特征。周围的机构时间表、其他物体的位置和人员流动都可能影响最终的情报评估。
摘要 - 基本上所有多传感器系统都必须校准其传感器,以利用其全部潜力进行状态估计,例如映射和本地化。在本文中,我们研究了感知系统的外在和内在校准的问题。传统上,以围板或独特身份标签的形式的目标用于校准这些系统。我们建议将整个校准环境用作支持不同类型传感器的内在和外在校准的目标。这样做,我们能够校准具有不同配置,传感器类型和传感器方式的多个感知系统。我们的方法不依赖于传感器之间的重叠,这些传感器通常在使用经典目标时通常需要。主要思想是将每个传感器的测量值与校准环境的精确模型联系起来。为此,我们可以为每个传感器选择一种最适合其校准的特定方法。然后,我们使用最小二乘调整共同估算所有内在和外部设备。最终评估了我们系统的激光镜头到相机校准,我们提出了一种与校准无关的评估方法。这允许在不同校准方法之间进行定量评估。实验表明我们提出的方法能够提供可靠的校准。
11实验结果42 11.1 4 IMU + 3 GS摄像机。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。43 11.1.1具有不同数量的相机的校准。。。。。。。。。。。。。。。。。43 11.1.2与Kalibr进行了比较。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 44 11.1.3比较IMU内在质量。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。43 11.1.2与Kalibr进行了比较。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。44 11.1.3比较IMU内在质量。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。44 11.1.3比较IMU内在质量。。。。。。。。。。。。。。。。。。。。。。。。。。。49 11.2 4 IMU + 2 GS摄像机 + 2 RS摄像机。。。。。。。。。。。。。。。。。。。。。。49 11.2.1 IMU和GS/RS的校准。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 49 11.2.2评估多个陀螺仪校准。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 50 11.2.3时间校准。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 50 11.3带有4个IMU + 2 GS摄像机的平面运动。 。 。 。 。 。 。 。 。 。 。49 11.2.1 IMU和GS/RS的校准。。。。。。。。。。。。。。。。。。。。。。。。。49 11.2.2评估多个陀螺仪校准。。。。。。。。。。。。。。。。。50 11.2.3时间校准。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。50 11.3带有4个IMU + 2 GS摄像机的平面运动。。。。。。。。。。。。。。。。。。。。。。50 11.4关于估计收敛的讨论。。。。。。。。。。。。。。。。。。。。。。。。。。51