抗油菜素唑(BZR)转录因子是油菜素内酯(BR)信号转导的关键元件,在调控植物生长发育中起重要作用。但关于BZR在甜菜主根生长中的分子调控机制知之甚少。在本研究中,外源BR处理显著诱导了BvBZR1的表达。过表达BvBZR1的转基因甜菜与野生型相比表现出更大的主根直径,这主要是由于通过增加薄壁细胞的大小和层数,形成层环之间的间距显著增加。BvBZR1调节BvCESA6、BvXTH33、BvFAD3和BvCEL1的表达,增强细胞壁代谢,促进甜菜主根在薄壁细胞中生长和每个形成层环的发育。此外,BvBZR1过表达显著增加了主根中蔗糖和可溶性糖的积累,这是由于它能够调控甜菜主根各形成层环和薄壁细胞中BvSPS和BvINV的表达,提高BvSPS、BvSS-S、BvSS-C和BvINV酶的活性所致。这些结果说明BvBZR1能够调控细胞壁和蔗糖代谢相关基因的表达,提高相应酶活性,促进各形成层环和薄壁细胞的发育,从而促进甜菜主根的生长发育。
根的横截面显示了佩里德尔的三层组织,软木塞,软木形成和次级皮层。软木细胞在外观上呈径向扁平和矩形,充满了深棕色含量,可产生单宁反应。软木形成是2或3个分层,压缩了,并充满了深褐色的内容。次级皮层为3或4,与类似于软木细胞的细胞分层。它几乎没有深棕色的内容。次级韧皮部由筛子,实质,韧皮部射线细胞以及几种菌群管组成。实质细胞充满淀粉颗粒,用
基于 NREL Cambium Mid Case 的边际电网偏移:Gagnon、Frazier、Hale、Cole (2020):2020 年标准情景的 Cambium 数据,https://cambium.nrel.gov/ SERC-East 长期边际排放率 o 2022-2026 年 – 所有小时:1,388 磅 CO 2e /MWh;光伏小时:1,087 磅 CO 2e /MWh o 2027-2034 年 – 所有小时:910 磅 CO 2e /MWh;光伏小时:657 磅 CO 2e /MWh o 2025-2044 年 – 所有小时:587 磅 CO 2e /MWh;光伏小时数:238 磅 CO2e/MWh o 2025-2044 – 所有小时数:799 磅 CO2e/MWh;光伏小时数:460 磅 CO2e/MWh o 618 磅 CO2e/MWh(净 FCP 热率为 5515,包括 5.1% 的 T&D 损耗减少信用);容量系数:热电联产为 90%,光伏为 24.3%
对于 iPad、Android 平板电脑和 Chromebook,安全测试 (以前称为 AIRSecureTest) 应用程序是 Cambium Assessment 的安全浏览器的移动版本。您可以在每个应用商店下载并安装它。第一次打开此应用程序时,它会要求您选择您的状态和评估程序。您的选择将被保存,从那时起,移动安全浏览器的工作方式与桌面版本一样,允许您访问操作测试、实践测试和网络诊断工具。您还可以使用任何移动设备管理实用程序在多个托管设备上安装安全浏览器并配置这些设备。新版本发布后,以前安装的移动安全浏览器版本将自动更新。
该公司已在未来 7 年内根据 IPCEI ME/CT 2 计划从德国经济事务和气候行动部和北莱茵-威斯特法伦州获得 2.287 亿欧元公共资金 1。除了公共资金外,Black Semiconductor 还获得了额外的 2570 万欧元股权融资。此轮融资由保时捷风险投资公司和 Project A Ventures 领投,斯堪尼亚成长资本、Capnamic、Tech Vision Fonds 和 NRW.BANK 等领先的风险投资公司、企业和行业领袖也参与其中,种子轮投资者包括 Vsquared Ventures、Cambium Capital 和 Hermann Hauser 的 Onsight Ventures。凭借这笔资金,该公司有望实现其愿景的第一阶段:到 2031 年将新一代芯片技术从研究推进到量产。
本文讨论了旨在评估建筑物长期 CO 2 e 排放量的美国国家标准的制定和影响。本文讨论了住宅和商业建筑的标准,这些标准使用每小时能源使用量来评估 CO 2 e 影响,以预测长期 CO 2 e 排放量。由于建筑物能源使用量和电力公用电网的排放强度随一天中的时间和季节而变化,因此采用每小时而不是每年的核算方法非常重要。此外,现场燃料选择也有很大影响,尤其是在预测长期排放影响方面。随着通过使用可再生资源、能源储存和分布式能源资源减少电力公用电网的碳排放,现场燃烧燃料对长期排放预测的影响变得越来越突出。由于建筑物可以使用数十年,因此预测未来的电网至关重要。电力部门规划模型可用于创建前瞻性排放指标,这些指标对建筑界在长期建筑能源排放预测和了解电网如何随时间演变方面很有用。美国国家可再生能源实验室 (NREL) 开发的 2021 Cambium 数据库满足了美国未来电网预测的需求。也应为其他电网开发类似的数据库。这些标准的使用还涉及美国环境保护署 (EPA) 温室气体 (GHG) 议定书范围 3 的影响。本文讨论了两项为解决建筑能耗直接产生的 CO 2e 排放而制定的美国国家标准 — — 一项针对住宅单元,另一项针对商业建筑。两项标准都旨在评估当前和未来建筑能耗设计决策对 CO 2e 的影响,其中 CO 2e 包括甲烷 (CH 4 ) 和一氧化二氮 (N 2 O) 以及二氧化碳 (CO2) 温室气体排放当量。美国住宅能源服务网络 (RESNET) 已将二氧化碳当量指数纳入 ANSI/RESNET/ICC 标准 301,ASHRAE 标准 90.2 使用该指数确定住宅单元是否符合规定,ASHRAE 则纳入了零碳排放因子 (zCEF),以确保商业建筑符合 ASHRAE 标准 189.1。这两项标准都利用 Cambium 数据库预测未来电网排放量。这两项标准都使用燃烧前加上燃烧长期边际二氧化碳当量排放率 (LRMER_CO 2 e) 的组合,并将其应用于每小时能源使用量,以评估长期排放量。这两项标准都假设 NREL 低成本可再生能源情景来确定电网未来的燃料结构。这两项标准还使用 Cambium 生成和排放评估 (GEA) 区域来确定地理电网敏感性。
为了确定公用事业的边际 CO 2 排放率,我们使用了 NREL 的 2030 年 Cambium Mid-Case 95 by 2035 情景中每小时的边际 CO 2 当量排放率。模拟的排放影响是用短期边际排放率和长期边际排放率量化的影响的平均值。短期边际排放率是系统中现有边际发电机的排放率。长期边际排放率是将添加到系统中以服务于新负荷增长的装置的预期排放率。由于两者都是合理的观点,并且考虑到我们研究的中期重点,我们使用两个成本估算的中点。
弹性植物的生长取决于分生组织的功能,包括芽顶分生组织(SAM),根尖分生组织(RAM)和侧向分生组织。血管形成是侧向分生组织,负责径向轴处的二次生长和茎膨胀。血管形成库的干细胞增殖,而后代分化为木质部和韧皮部细胞。每个径向细胞文件都有一个双种族干细胞,该干细胞同时产生木质部和韧皮部细胞谱系(Shi等,2019; Smetana等,2019)。确实成菌的干细胞和未分化的木质部和韧皮部祖细胞形成一个形糖化区域,通常用作形糖化活性的指标(图1A)。顶端分生组织和血管分生组织在空间上分离。这些分生组织之间的协调生长是通过移动信号(例如激素,肽和机械提示)介导的(Fischer等,2019)。环境因素在调整二次增长方面也起着重要作用。二级增长是一种进化创新,可为更大,更复杂的植物体提供足够的机械支持和有效的长距离流体传输(Tonn and Greb,2017)。此外,二级生长还会产生大量的木质生物量,顽固形式的碳形式,可以通过将大气碳固定在存储中,从而有可能减轻全球变暖。主要的血管发育是在胚胎发生期间早期建立的(Miyashima等,2013)。前尾首字母开始在全球阶段分裂,形成类似于胚胎后根血管的径向模式(Rodriguez-Villalon等,2014)。在最近的几篇优秀评论论文中讨论了调节原发血管发育的信号传导途径(Fischer和Teichmann,2017年; Tonn和Greb,2017; Wang,2020; Turley and Etchells,2022; Wang等,2023)。本文主要关注调节植物血管确实活性和继发生长的进步。