Camelina是Brassica家族的成员,也是既定的油料作物。骆驼种子油是营养的,适合饲料或食物;种子产品可用于陆生和水产养殖应用,以支持高价值生物基础的经济活动。最近,Camelina吸引了政策制定者和种植者的关注,因为它具有支持更具弹性和可持续的食品系统的能力。卡梅利娜(Camelina)具有吸引力,因为它具有对主要害虫(卷心菜茎跳蚤甲虫)的抵抗力,投入成本较低,并且在不可预测的生长条件下幸存下来。
拥有几种有价值的农艺特征使Camelina成为有价值的农作物。 例如,Camelina的生长季节较短(85-100天),并包含春季和冬季品种。 此外,其油产率(从400至850 kg /ha(Per)通常可与Brassica Jansa和Brassica Rapa相当,而高于大豆(6)。< /div> Camelina还具有容忍干旱压力的能力,因此它较少依赖灌溉。 由于该工厂中提到的pro,提高了石油及其餐食的质量是Camelina可以追求的纠正目标之一。 Camelina油的质量通过其脂肪酸组成来挖掘。 另一方面,其抗营养因子(尤其是葡萄糖醇)及其纤维和蛋白质之比也会影响其质量。 质量也可以归因于种子中的石油和蛋白质的比例,尤其是油(7),尤其是油(7)。拥有几种有价值的农艺特征使Camelina成为有价值的农作物。例如,Camelina的生长季节较短(85-100天),并包含春季和冬季品种。此外,其油产率(从400至850 kg /ha(Per)通常可与Brassica Jansa和Brassica Rapa相当,而高于大豆(6)。< /div>Camelina还具有容忍干旱压力的能力,因此它较少依赖灌溉。由于该工厂中提到的pro,提高了石油及其餐食的质量是Camelina可以追求的纠正目标之一。Camelina油的质量通过其脂肪酸组成来挖掘。其抗营养因子(尤其是葡萄糖醇)及其纤维和蛋白质之比也会影响其质量。质量也可以归因于种子中的石油和蛋白质的比例,尤其是油(7),尤其是油(7)。
背景:硬化菌核(SS)是一种广泛的宿主范围,可影响400多种植物物种。ss cys camelina sativa(CS)的茎腐病疾病是一种适用于低输入作物和工业油属性的Allohexaploid crucifer物种,适用于生物燃料和润滑剂。组织化学和分子研究已将C. sativa中的SS抗性与细胞壁木质化联系起来(Eynck等,2012),并报道了CSS抗性线CN114263中的Cinnamoyl-COA还原酶4(CSCCR4)基因的组成型表达。现代繁殖工作(例如基因编辑)需要改善商业线条,并限制农作物损失的风险,这对生产者来说是重要的。目的:为了研究单极生物合成的重要性以及CSCCR4在Camelina对SS耐药性中的作用,我们使用CRISPR/CAS9介导的基因编辑产生了CN114263 Camelina系的CSCCR4敲除突变体。材料和方法:三十T1植物是通过花卉浸入转化产生的,然后是草甘膦喷雾,该植物在筛选程序的第一步中使用,并通过PCR方法确认。使用数字液滴PCR(DDPCR)确定T1和T2祖细胞中T1和T2祖细胞中的T-DNA拷贝数变化T-DNA CNV,并且通过下降测定技术对T1和T2代的CSCCR4同源物的三个副本中的三个副本中的突变发生。为确保T2植物中的突变体是真实的,对其中三个的cas9/ grna特异性裂解点侧面进行了topo ta测序。在T2代生成中,筛选了CSCCR4基因中的潜在突变。结果:在T1代中,确认了25种植物,这些植物在相应的Camelina基因组中具有1至9个TNA拷贝。在CSCCR4的三个副本中证明了各种类型的突变,包括插入和缺失。实际上,CRISPR系统可以分别在编号T2-Plant 10,T2-Plant 15和T2-Plant 19的事件中删除一个,两或三个副本。T3-plant 19在上一代中所有版本的CSCCR4中表现出突变具有易感性的螺旋杆菌侵袭,并保留为实际CSCCR4突变体材料,以进一步研究骆驼 - 螺旋菌相互作用。CSCCR4中的突变是通过容易出错的非同源端连接(NHEJ)核DNA修复途径发生的。ss挑战早期开花的T3一代。与WildType对照母体CN114263相比,在CSCCR4位置217处的突变的T3植物在CSCCR4位置217处的过早停止密码子受到了损害。结论:使用DDPCR很容易识别T1和T2祖细胞中CSCCR4同源物中的T-DNA CNV和突变的发生。我们说明,CRISPR/CAS9介导的突变是一种体面的技术,可以用来加快突变线的发展,可以帮助您弄清CSCCR4基因在防御:sativa C. c. c. c.c。sativa中的活性,作为前瞻性石油种植作物的生物柴油生产。
种子油可用作食用油,也越来越多地用于工业用途。尽管高油酸种子油更适合工业用途,但大多数种子油富含多不饱和脂肪酸 (PUFA),而油酸等单不饱和脂肪酸 (MUFA) 含量较低。亚麻荠油是一种新兴的油籽作物,种子含油量高,且能抵抗环境压力,其含有 60% 的 PUFA 和 30% 的 MUFA。六倍体亚麻荠携带三种 FAD2 同源物,编码脂肪酸去饱和酶 2 (FAD2),负责从油酸合成亚油酸。在本研究中,为了增加亚麻荠籽油中的 MUFA 含量,我们通过 CRISPR-Cas9 介导的基因编辑生成了 CsFAD2 敲除植物,使用包含 DsRed 作为选择标记的 pRedU6fad2EcCas9 载体、用于驱动覆盖三个 CsFAD2 同源物共同区域的单个向导 RNA (sgRNA) 的 U6 启动子以及用于驱动 Cas9 表达的卵细胞特异性启动子。我们使用来自转化亚麻荠叶片的基因组 DNA 通过 PCR 分析了 CsFAD2 同源物特异性序列。三对 FAD2 同源物的敲除导致矮小的丛生表型,但大大提高了种子中的 MUFA 水平(提高了 80%)。然而,具有两对 CsFAD2 同源物的转化子被敲除,但另一对野生型杂合子显示正常生长,种子 MUFA 产量增加了 60%。这些结果为通过基因组编辑影响多倍体作物生长的基因代谢工程提供了基础。