虽然共聚焦显微镜是生物医学成像实验室的主力,为图像对比度和质量树立了黄金标准,但逐点获取图像的速度本来就很慢。为了突破这一速度障碍,Photon Force 客户使用 PF32 构建了开创性的多光束共聚焦显微镜架构:用光束阵列取代典型共聚焦显微镜的单光束和针孔,以快速扫描图像平面。返回点与 SPAD 阵列的感光区域对齐,这些区域充当虚拟针孔,可阻挡失焦光。由于每个光束和 SPAD 阵列像素对都完全独立且并行运行,因此最终的系统可以将共聚焦荧光寿命显微镜的速度提高几个数量级。
利用公众支持从大量数据集中提取信息已成为准确标记相机陷阱 (CT) 图像中野生动物数据的一种流行方法。然而,对志愿者工作不断增长的需求延长了数据收集与我们得出生态推断或执行数据驱动的保护行动的能力之间的时间间隔。人工智能 (AI) 方法目前在物种检测(即图像中是否包含动物)和标记常见物种方面非常有效;然而,它对图像中很少捕捉到的物种和视觉上彼此高度相似的物种表现不佳。为了充分利用人类和人工智能分类方法的最佳优势,我们开发了一个集成的 CT 数据管道,其中人工智能提供标记图像的初始传递,但由人类监督和验证(即“人在环”方法)。为了评估分类准确度的提高,我们将人工智能和 HITL 协议生成的物种标签的精度与野生动物专家注释的“黄金标准”(GS)数据集进行比较。人工智能方法的准确性取决于物种,并与训练图像的数量呈正相关。 HITL 的共同努力使 73% 的数据集的错误率低于 10%,并降低了另外 23% 的错误率。对于两个外观相似的物种,人类输入的错误率高于人工智能。虽然与仅使用人工智能相比,将人类纳入循环会增加分类时间,但准确率的提高表明这种方法对于大批量 CT 调查非常有价值。
相机陷阱被广泛用作调查引进和本土野生动物的方法(O'Connell 等人 2011;Meek 等人 2014a;Rovero 和 Zimmerman 2016)。调查的设计将根据项目目标而有所不同,这直接影响相机陷阱阵列、部署相机陷阱的数量和位置(Claridge 和 Paull 2014)。相机陷阱不是一种万能的方法,需要根据目标、调查设计和感兴趣的物种进行定制。相机陷阱是一种精密工具;需要小心地将它们放置在野外并进行维护。本手册提供了指南,描述了相机陷阱的工作原理以及如何放置它们以调查波特里国家公园的捕食者和本土物种。
尽管对于静态针孔摄像头情况(第一个列),两种分布的分布都是一致的,但与基于EWA的基于EWA的估计值相比,基于UT的速度更为准确,而对于静态拟合摄像机案例(第三列),则在较高的非网络性非线性的情况下,UT可以使UT产生更好的近似值。用于滚动式摄像头姿势(第二和第四列),基于RS的UT-预测仍然可以很好地估计RS感知的MC介绍。相比之下,RS-Unaware EWA线性化分解,无法近似此情况(直方图域被封顶为0。04用于更清晰的可视化,但是基于EWA的投影仍具有较大KL值的较长尾巴分布)。在基于EWA的RS渲染中观察到的撕裂伪影是由这些不准确的程序引起的,导致在体积渲染步骤中导致不正确的像素到高斯的关联。
Protocol IPv4/IPv6, ARP, TCP, UDP, RTCP, RTP, RTSP, RTMP, HTTP, HTTPS, DNS, DDNS, DHCP, FTP, NTP, SMTP, SNMP, UPnP, Bonjour, SIP, PPPoE, VLAN, 802.1x, QoS, IGMP, ICMP, SSL,TLS 1.2
Thundersoft提供交钥匙解决方案,包括RZ/V2H组的相机ISP调整。根据您的特定系统集成了各种相机模块,开发相机驱动程序和框架。我们的服务包括ISP调整和算法开发,旨在加快您的业务。开发是与Thundersoft的子公司MM Solutions合作进行的。
保修 根据 axis.com/warranty 上 Axis 5 年有限硬件保修 (“3 年保修期”) 中规定的条款和条件,本产品(包括电池)享受 3 年保修期。除了 Axis 5 年有限硬件保修中的条款和条件之外,如果电池充电次数超过 500 次,摄像机使用或存储的温度超出数据表的规格,或者未遵循产品用户手册中的说明,则保修不涵盖电池性能下降的情况。在 3 年保修期内,如果由 Axis(或代表 Axis 的 RMA 合作伙伴)以外的任何其他方更换电池,将使主要项目的保修失效。有关电池或服务的问题,请联系 Axis 支持或您的经销商。
对计算机视觉中以自我为中心任务的研究主要集中在标题相机上,例如鱼眼摄像机或沉浸式耳机内的嵌入式相机。我们认为,越来越多的光学传感器的微型化将导致相机在各个位置的多产摄像机中的多产。这将为计算机视觉中的确定任务带来新的观点,并使关键领域(例如人类运动跟踪,身体姿势估计或行动识别)尤其是针对下半身,通常会被遮挡。在本文中,我们介绍了Egosim,这是一种新颖的人体镜头相机的模拟器,该相机从佩戴者的身体上从多个角度产生了逼真的自我中心效果图。Egosim的关键特征是它使用真实的运动捕获数据来渲染运动伪像,这在手臂或腿部的摄像机中尤其明显。此外,我们还介绍了多款镜头的数据集,该数据集来自六个身体上的相机和地面真实真实的全身3D姿势:119小时的数据是从四个高效率的虚拟环境中的积极运动序列得出的,我们使用13个Gopro的5小时的运动范围和3 g的运动来增强,这些数据来自5小时,并从13个小时内增强。 套装。我们通过训练仅端到端视频3D姿势估计网络来证明Egosim的有效性。分析其域间隙,我们表明我们的数据集和模拟器大大帮助推断现实世界数据。EgoSim代码和MultieGoview数据集:https://siplab.org/projects/egosim
摘要 - 事件摄像机和常规框架摄像机的融合是一个新颖的研究场,由事件摄像头和框架摄像头组成的立体声结构可以结合两者的优势。本文为事件框架立体声摄像机系统开发了动态校准框架。在此框架中,第一个步骤是在圆网校准模式上完成初始检测,并提出了滑动窗口时间匹配方法以匹配事件框架对。然后,为两个摄像机设计了一种重新填充方法,以获取模式的准确信息。尤其是对于事件摄像机,具有较高计算效率的斑块大小运动补偿方法旨在实现扭曲事件图像中两个摄像机和拟合圆的时间同步。最后,通过构造具有两种类型边缘的姿势地标图,两个相机之间的姿势在全局优化了全局优化。所提出的校准框架具有高实时性能和易于部署的优点,并且通过基于自记录的数据集进行了实验来验证其有效性。本文的代码发布于:http://github.com/rayhu95/efsc calib。