Master(N = 27)Nyffeler J(2012),MSC。,MNF,UZH; Saxer J(2012)MSC。药理学,Ethz; MünstS(2013),MNF,UZH; M Conde(2014),MSC,Mol Biology,Sunb; Schmidt K(2014),MSC,Biology New,Ethz; Rokyta J.(2016)MSC,生物学,Ethz; Rea Rea(2017),MSC,NMF,UZH;医疗,伯尔尼; RE S(2017)MSC,NMF,UZH; Ruder J(2017)MSC,MEF,UZH;医学博士。E(2018)MSC,NMF,UZH; Mehta S(2018)MSC,MNF,UZH; Maggi K(2018)MSC,NMF,UZH; Grossmann L(2020)MSC,MNF,UZH; Pfister J(2021)MSC,MNF,UZH; Canan A(2022)MSC。,MEF,UZH;九N(2022)MSC,生物技术。 一个。 tehran; Benning A(2022)MSC,SK。 Eng。,EPFL; Salazar Campus JM(2022),MSC。 科学,马德里的秋天;周围的S(2023)MSC。,MNF,UZH; Rickli M 1(2023),MSC,MNF,UZH; Dzmitranist D(2023),MSC .. bologna; REJ(2023),硕士,里昂电子高级学校; KJ(2023),Mesc。 CAMMA T(焦虑),MSC,生物技术,Ethz; Campana L(Angoing),MSC,新翻译,Hein-Althinal-AnnerthDüsseldorf; Marten L(Angoing),MSC,自然访谈,Ethz; Disse Medicine。 (n = 6)E(2018)MSC,NMF,UZH; Mehta S(2018)MSC,MNF,UZH; Maggi K(2018)MSC,NMF,UZH; Grossmann L(2020)MSC,MNF,UZH; Pfister J(2021)MSC,MNF,UZH; Canan A(2022)MSC。,MEF,UZH;九N(2022)MSC,生物技术。一个。tehran; Benning A(2022)MSC,SK。Eng。,EPFL; Salazar Campus JM(2022),MSC。 科学,马德里的秋天;周围的S(2023)MSC。,MNF,UZH; Rickli M 1(2023),MSC,MNF,UZH; Dzmitranist D(2023),MSC .. bologna; REJ(2023),硕士,里昂电子高级学校; KJ(2023),Mesc。 CAMMA T(焦虑),MSC,生物技术,Ethz; Campana L(Angoing),MSC,新翻译,Hein-Althinal-AnnerthDüsseldorf; Marten L(Angoing),MSC,自然访谈,Ethz; Disse Medicine。 (n = 6)Eng。,EPFL; Salazar Campus JM(2022),MSC。科学,马德里的秋天;周围的S(2023)MSC。,MNF,UZH; Rickli M 1(2023),MSC,MNF,UZH; Dzmitranist D(2023),MSC ..bologna; REJ(2023),硕士,里昂电子高级学校; KJ(2023),Mesc。 CAMMA T(焦虑),MSC,生物技术,Ethz; Campana L(Angoing),MSC,新翻译,Hein-Althinal-AnnerthDüsseldorf; Marten L(Angoing),MSC,自然访谈,Ethz; Disse Medicine。(n = 6)
•农业是应用CRISPR技术的主要领域之一。•中国认为是世界上CRISPR发明的主要国家,农业是该技术应用的重要重点。•美国是该国,结合了与CRISPR技术有关的农业中最多的专利请求家族,这些国家被存放在广泛的领土上。•大多数存款都与教育和研究机构有关,尤其是我们起源的机构。•在与农业CRISPR技术应用相关的发明开发中的特色公司是Corteva,Corteva,Bayer,Limagrain Group,Sakata Seed,Syngenta和KWS。•limagrain集团,萨卡塔种子,先正达和kws具有各自的原籍国计算的发明的重要部分:法国,日本,瑞士和德国。•在该地区的主要储户中,较小的公司,例如本森山,伊纳里农业技术,成对工厂服务和山东·洪芬生物技术。
[1] TSMC研究领域 /记忆。https://research.tsmc.com/page/memory/4.html。 [2] J. Abrell,M。Kosch和S. Rausch。 使用可再生能源的碳减排:评估德国和西班牙的风和太阳补贴。 公共经济学杂志,169:172–202,2019。 [3] B. Acun,B。Lee,F。Kazhamiaka,K。Maeng,U。Gupta,M。Chakkaravarthy,D。Brooks和C. Wu。 碳资源管理器:设计碳吸引数据中心的整体框架。 in proc。 Asplos,2023。 [4] Argonne国家实验室。 问候。 https://greet.es.anl.gov,2022。 [在线;访问30-May-20122]。 [5] L. Barroso,J。 Dean和U. Holzle。 Web搜索一个星球:Google群集体系结构。 IEEE Micro,23(2):22–28,2003。 [6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。 用于基于芯片的高级3D系统体系结构的主动插座技术。 IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。 [7] J. Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。 计算机协会。 Wu。https://research.tsmc.com/page/memory/4.html。[2] J. Abrell,M。Kosch和S. Rausch。使用可再生能源的碳减排:评估德国和西班牙的风和太阳补贴。公共经济学杂志,169:172–202,2019。[3] B. Acun,B。Lee,F。Kazhamiaka,K。Maeng,U。Gupta,M。Chakkaravarthy,D。Brooks和C. Wu。碳资源管理器:设计碳吸引数据中心的整体框架。in proc。Asplos,2023。[4] Argonne国家实验室。 问候。 https://greet.es.anl.gov,2022。 [在线;访问30-May-20122]。 [5] L. Barroso,J。 Dean和U. Holzle。 Web搜索一个星球:Google群集体系结构。 IEEE Micro,23(2):22–28,2003。 [6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。 用于基于芯片的高级3D系统体系结构的主动插座技术。 IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。 [7] J. Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。 计算机协会。 Wu。[4] Argonne国家实验室。问候。https://greet.es.anl.gov,2022。 [在线;访问30-May-20122]。 [5] L. Barroso,J。 Dean和U. Holzle。 Web搜索一个星球:Google群集体系结构。 IEEE Micro,23(2):22–28,2003。 [6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。 用于基于芯片的高级3D系统体系结构的主动插座技术。 IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。 [7] J. Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。 计算机协会。 Wu。https://greet.es.anl.gov,2022。[在线;访问30-May-20122]。[5] L. Barroso,J。Dean和U. Holzle。Web搜索一个星球:Google群集体系结构。IEEE Micro,23(2):22–28,2003。[6] Minoret,C。Ribière,G。Romero,P.-E。 Philip,Y。Exbrayat,D。Scevola,D。Campos,M。Argoud,N。Allouti,R。Eleouet,C。FuguetTortolero,C。Aumont,D。Dutoit,C。Legalland,J。Michailos,S.Chéramy和G. Simon。用于基于芯片的高级3D系统体系结构的主动插座技术。IEEE第69电子组件和技术会议(ECTC),第569–578页,2019年。[7] J.Dodge,T。Prewitt,R。Tachetdes Combes,E。Odmark,R。Schwartz,E。Strubell,A。S。Luccioni,N。A。Smith,N。Decario和W. Buchanan。计算机协会。Wu。在云实例中测量AI的碳强度。在2022年ACM公平,问责制和透明度会议上,FACCT '22,第1877- 1894页,纽约,纽约,纽约,2022年。[8] H. M. El-Houjeiri,A。R。Brandt和J. E. Duffy。使用现场特征估算原油生产中的温室气体排放的开源LCA工具。环境科学技术,47 11:5998–6006,2013。[9] S. Fan,S。Zahedi和B. Lee。计算冲刺游戏。Asplos,2016年。[10] X.粉丝,W.-D。韦伯和L. Barroso。仓库比例计算机的功率供应。在ISCA,2007年。 [11] C. Freitag,M。Berners-Lee,K。Widdicks,B。Nowles,G。S。Blair和A. Friday。 ICT的真正气候和变革性影响:对估计,趋势和法规的批评。 模式,2(9),2021。 [12] B. Ghorbani,O。Firat,M。Freitag,A。Bapna,M。Krikun,X。Garcia,C。Chelba和C. Cherry。 神经机器翻译的缩放定律。 在国际学习表征会议上,2022年。 [13] K. Gillingham,D。Rapson和G. Wagner。 反弹效应和能源效率政策。 审查环境经济与政策,2016年10月1日。 [14] U. Gupta,M。Elgamal,G。Hills,G.Y。 Wei,H.-H。 S. Lee,D。Brooks和C.-J。 ACT:使用建筑碳建模工具设计可持续的计算机系统。 在ISCA,2022年。 [15] U. Gupta,Y。G. Kim,S。Lee,J。Tse,H。H. S. Lee,G.-Y. Wei,D。Brooks和C. J. Wu。在ISCA,2007年。[11] C. Freitag,M。Berners-Lee,K。Widdicks,B。Nowles,G。S。Blair和A. Friday。ICT的真正气候和变革性影响:对估计,趋势和法规的批评。模式,2(9),2021。[12] B. Ghorbani,O。Firat,M。Freitag,A。Bapna,M。Krikun,X。Garcia,C。Chelba和C. Cherry。神经机器翻译的缩放定律。在国际学习表征会议上,2022年。[13] K. Gillingham,D。Rapson和G. Wagner。反弹效应和能源效率政策。审查环境经济与政策,2016年10月1日。[14] U. Gupta,M。Elgamal,G。Hills,G.Y。Wei,H.-H。 S. Lee,D。Brooks和C.-J。 ACT:使用建筑碳建模工具设计可持续的计算机系统。 在ISCA,2022年。 [15] U. Gupta,Y。G. Kim,S。Lee,J。Tse,H。H. S. Lee,G.-Y. Wei,D。Brooks和C. J. Wu。Wei,H.-H。 S. Lee,D。Brooks和C.-J。ACT:使用建筑碳建模工具设计可持续的计算机系统。在ISCA,2022年。[15] U. Gupta,Y。G. Kim,S。Lee,J。Tse,H。H. S. Lee,G.-Y.Wei,D。Brooks和C. J. Wu。追逐碳:计算的难以捉摸的环境足迹。在HPCA中,2021年。[16] G. Hardin。公地的悲剧。Science,162(3859):1243–1248,1968。[17] G. Hills,M。García-Bardón,G。Doornbos,D。Yakimets,P。Schuddinck,R。Baert,D。Jang,L。Mattii,S。M。M. Y. Sherazi,D.Rodopoulos,D.Rodopoulos,R.RiTzenthaler,C.S. Lee,A。V.-Y.Thean,I。Radu,A。Spessot,P。Bebacker,F。Catthoor,P。Raghavan,M。Shulaker,H.-S。 P. Wong和S. Mitra。了解数字VLSI的碳纳米管现场效应晶体管的能效益处。IEEE纳米技术交易,17(6):1259–1269,2018年9月。
•每个目标测试项目都链接到紧接其之前的命令。根据链接的命令,在答题表上链接到的每个项目:如果您判断正确的项目,则用代码C指定的字段;或用代码指定的字段,如果您判断错误的项目。没有两个字段的标记或标记不是囚犯,即他们不会获得负分数。有关适当的标记,请使用答题表,这是唯一有效校正客观测试的文档。•如果有一些项目可以评估计算机技能和(或)信息技术,除非另有明确通知,否则请考虑所有提到的程序都在标准配置中,并且对程序,文件,目录,资源和设备没有保护,操作和使用限制。•可能的自由空间 - 通过“自由空间”的表达方式识别 - 该测试书可用于草稿。
本文旨在扫描有关人类基因组测序的有力医学文献,该文献主要由1990年始于1990年的国际倡议人类基因瘤(PGH)进行,在科学世界中具有很大的意义。完整的测序仅在20年后由私人倡议端粒到居组(T2T)完成。人类基因组的知识提出了道德和社会问题,要求创建道德,法律和社会影响研究计划(ELSI)。多年的研究要求创建新技术以及不存在的科学领域,例如个性化医学,包括药物基因组学,这些药物直接影响了与每个人的遗传特征相关的疾病的诊断和治疗。我们用作研究引擎,Scielo,PubMed,Google学术,科学直接,虚拟健康图书馆(BVS)以及国家人类人类基因组研究所(NHGR),自然,开放科学杂志自然和博士学位审查,通过描述者,通过人类的基因瘤,治疗,伦理,测序,实现科学的知识。但是,仍然涉及较高的财务成本,这在广泛使用它们方面遇到了困难。
教授Ana Claudia Belfort 博士,获得新朱利奥大学 - UNINOVE 的管理学博士学位(研究领域:组织战略),新朱利奥大学 - UNINOVE 的管理学硕士学位(项目管理)(研究领域:项目管理战略)。获得安年比莫伦比大学(UAM)管理学学士学位。我目前在 Faculdade Campos Elíseos – FCE 担任教授,负责面授(本科)和远程(研究生)课程的小时教授。自 2018 年 10 月起,我一直担任同一机构的面授管理课程协调员,并担任管理、会计科学、财务管理、公共管理和人力资源管理课程的结构化教学核心 (NDE) 成员。在我教授的科目中,我重点介绍:成本会计、TCC 项目开发、战略管理、生产和服务管理、国际商务管理、商业物流、科学工作方法、战略规划、物流项目和课程结束工作 (TCC)。除了教学事业之外,我还是 CNPq 注册研究小组的研究员“行为策略”,该小组由教授领导。费尔南多安东尼奥里贝罗塞拉博士。自 2018 年起,我一直担任国家教育研究与研究学院 Anísio Teixeira (INEP/MEC) 的特设评估员。我还担任《管理与项目杂志》、《伊比利亚美洲战略杂志》、《行政科学电子杂志 - RECADM》、《管理杂志 - UFSM》、《管理与创新杂志 - RAI》、《国际商务电子杂志 - INTERNEXT》、《国际创新杂志 - IJI》等期刊的审稿人;以及 EnANPAD、SemeAd、国际商务学院和学院管理年会等国家和国际活动的评审员。在后者中,我于2017年获得了管理学院国际管理分部顶级评审员奖。专业上,我的工作是为中小型公司提供商业咨询,同时也是一家大宗商品进口公司的经理,负责行政、法律、营销、物流和外贸领域。我还在一家进口公司担任物流主管。
1993; Usui等,2007)。 劳动期间的FHR监测是检测胎儿心率模式改变的有价值工具,表明胎儿氧合不足,使产科医生及时干预能够减轻低氧或死亡率的风险。 电子胎儿监测(EFM)目前被认为是评估宫内胎儿胎儿健康和氧合水平的关键方式(Sweha等,1999),由于其易用性和非侵入性。 因此,EFM已成为产科中必不可少的辅助筛查方法,其利用率在产前和产前设置中都在扩展。 记录胎儿心率的动态变化可以作为子宫内胎儿供应的间接指标,从而促进急性和慢性宫内宫内低氧或窒息的早期检测,从而提高临床效率。 EFM生成的心脏图(CTG)同时显示FHR和子宫收缩,从而提供了对其相互作用的见解(Alfic等,2017)。 目前,存在三个广泛使用的临床标准用于评估FHR监测。 在学术文献中讨论的FHR解释的第一种方法是加拿大产科医生和妇科学家学会(SOGC)指南中概述的非施用测试(NST)分类,该指南将FHR分类为正常,非典型,典型和abnormal(Liston等人(Liston等)。 每种分类的CTG基本特征的评估侧重于基线,基线变异性,加速度和减速。 Georgoulas等。 Spilka等。1993; Usui等,2007)。劳动期间的FHR监测是检测胎儿心率模式改变的有价值工具,表明胎儿氧合不足,使产科医生及时干预能够减轻低氧或死亡率的风险。电子胎儿监测(EFM)目前被认为是评估宫内胎儿胎儿健康和氧合水平的关键方式(Sweha等,1999),由于其易用性和非侵入性。因此,EFM已成为产科中必不可少的辅助筛查方法,其利用率在产前和产前设置中都在扩展。记录胎儿心率的动态变化可以作为子宫内胎儿供应的间接指标,从而促进急性和慢性宫内宫内低氧或窒息的早期检测,从而提高临床效率。EFM生成的心脏图(CTG)同时显示FHR和子宫收缩,从而提供了对其相互作用的见解(Alfic等,2017)。目前,存在三个广泛使用的临床标准用于评估FHR监测。在学术文献中讨论的FHR解释的第一种方法是加拿大产科医生和妇科学家学会(SOGC)指南中概述的非施用测试(NST)分类,该指南将FHR分类为正常,非典型,典型和abnormal(Liston等人(Liston等)。每种分类的CTG基本特征的评估侧重于基线,基线变异性,加速度和减速。Georgoulas等。Spilka等。第二种方法是由美国产科医生和妇科学院(ACOG)共同开发的三层FHR系统(ACOG),母体 - 竞争医学学会(SMFM)以及国家儿童健康与人类发展研究所(NICHD),将FHR分为I,II,II,III和III II III和III criteria(MacOnes等)。指导的第三个来源是国际妇科和妇产科联合会(FIGO)和美国国家健康与临床卓越研究所(NICE)的共识指南(FIGO),将胎儿监测分为三个类别:正常,可疑和病理学(Ayres-De Campos Campos Et。,2015年)。尽管有标准化的指南,但产科专业知识的建议和变化的差异有助于观察者解释FHR的显着多样性。近年来,在医疗保健领域,人工智能(AI)技术的整合越来越多,尤其是在需要进行多方面输入以进行评估和迅速决策的领域中。一个值得注意的应用是在人工和分娩过程中电子胎儿心脏监测的领域中。使用AI可以最大程度地减少观察者之间的可变性,从而实现FHR数据的实时解释,以防止忽略必要的干预措施并增强新生儿结果。此外,AI还提供了对FHR监测发现分析的更标准化的解释。许多研究人员努力利用特征提取和机器学习技术的融合来对FHR进行分类。(2006)在时间和频域中进行了特征提取,并结合形态特征,并应用了支持向量机(SVM)来对特征进行分类。(2012)使用三种类型的特征进行分类,包括11个类似FIGO的功能,14个基于心率的基于心率的特征和8个非线性特征。降低维度后,使用天真的贝叶斯,SVM和C4.5决策树
●展示您的研究:2分钟的火对话,然后是海报演示,将使学生可以分享他们的研究并与讲师和同伴互动。certev讲师(暂定)Ana Candida M. Rodrigues - 电气性能AndréaS。S. S. S. de Camargo - 光学性能 - 埃德加·杜拉·扎诺托(Edgar Dutra Zanotto) - 玻璃结晶的基础Eduardo Bellini Ferreira - 玻璃烧结和João - MD模拟Marcos de Oliveira Junior - NMR Francisco Serbena的玻璃结构 - 玻璃和玻璃陶瓷的机械性能Marcelo Nalin - 光子玻璃Paulo S. Paulo S. Paulo S. Paulo S. Paulo S. William lacourse - 离子交换,包装密度,混合碱效应S. K. S. K. Sundaram - 玻璃杯中的结构 - terahertz性质关系多丽丝·莫恩克(DorisMöncke) - 光谱,碱性,碱性,多面离子,多硅氧化物玻璃,collin wilkinson - collsh wilkinson - 玻璃制作玻璃制度的玻璃制作原理,托尔什(Glass)的模型,模型,构造了仪器,以及原始的理论。本杰明·莫尔顿(Benjamin Moulton) - 光谱镜(各种氧化物玻璃的结构)CAIO BRAGATTO - 玻璃行业讲师的电气(目前正在联系):FAPESP,CER T EV,DEMA -FEV,DEMA -FELSCAR,NYSCC,NYSCC,NYSCC- ALFRED UNIVESSION。Glass Industries将非常欢迎加入这项旨在培训下一代玻璃科学家和工程师的计划。注册没有为学校的注册费。此外,我们将为酒店提供最多六个晚上的酒店,并为讲师和注册的M.Sci提供一些餐费。和Ph.D.学生。我们最初提供有限的30名学生补助金。根据行业资金,这个数字可以增加到40或50。感兴趣的国际和巴西学生必须提供其研究生研究工作的摘要
独立承包、自雇和零工:来自加州税务数据的证据 安妮特·伯恩哈特 加州大学伯克利分校 克里斯托弗·坎波斯 芝加哥大学 艾伦·普罗霍夫斯基 特许经营税委员会 阿帕娜·拉梅什 加州大学伯克利分校 杰西·罗斯坦 加州大学伯克利分校 2022 年 7 月 摘要 我们使用来自加州个人所得税申报表的去识别数据来衡量加州独立承包和自雇工作的频率和性质。我们通过纳税申报表上的 C 表和/或收到 1099 表信息申报表来识别此类工作。我们估计,2016 纳税年度 18-64 岁的加州工人中有 14.4% 有一些独立承包或自雇收入;其中约有一半的工人在一年内也从传统的 W-2 工作中获得了收入。我们发现只有一小部分(1.4%)的工人从在线劳动力平台(通常称为零工)获得收入。低收入工人更有可能获得独立承包或自雇收入,并且主要或完全依赖该收入。我们探讨了从事独立承包和自雇的工人的特征及其在家庭类型、地域和行业中的分布。______________________ *我们感谢 Charles Davis、Samantha Fu、Nick Gebbia、John Iselin、Patrick Kennedy、Robbie Linden、Ian Eve Perry、Sarah Thomason 和 Dario Tortarolo 提供的出色研究协助。我们还要感谢 Julie Moreno、Sean McDaniel、Chad Angaretis、Xudong Chen、Bud Flynn 和 Jeff McTygue 帮助我们理解税务数据。该项目部分由美国劳工部学者计划(合同 DOL- OPS-15-C-0060)、阿尔弗雷德·P·斯隆基金会和 Ewing Marion Kauffman 基金会资助。本文中的任何内容都不代表特许经营税务委员会的官方立场。本出版物的内容和表达的观点完全由作者负责,不应归因于 FTB、DOL 或其他资助者,提及的商标、商业产品或组织也不意味着 FTB 或任何作品资助者对其的认可。
第十ibero裔美国人会议应用计算2023(CIACA 2023)旨在解决应用计算领域和相关主题中感兴趣的主要主题。本次会议基本上是技术方面。与应用计算相关的所有领域都引起了人们的关注,包括但不限于以下领域:•应用程序领域:电子商务和ePayment,Elearning,Ehealth和Esports,IT服务,移动计算,管理,管理和知识分布。•性能:分布式和并行系统,网格计算,评估和分析,智能系统,大型应用程序,本地和分布式存储。•可用性:服务自动化,以人为中心的计算,多媒体和可视化,用户界面模式,个性化和移情系统,虚拟现实。•基本概念和工程:算法,数据库和数据挖掘,信息系统,获取和汇总的信息,语言和编程,安全性和隐私的概念。•通信:物联网(物联网),行业4.0,移动和网络系统,协议,标准和语言,www传感器,应用程序和技术。•硬件:嵌入式计算,环境结构,移动方面,物联网节点,安全概念和设备,宽带信息流。
