然而,IEA 情景中缺少对加拿大气候影响的分析。4 为了帮助填补这一空白,ECCC 气候研究部协助 PBO 使用 Canadell 等人 (2021) 报告的关系将排放与温度(以及其他气候变量)联系起来。使用 MAGICC 模型运行相同的模拟(Meinhausen 等人,2011)对这些结果进行了双重检查。附录 B 提供了有关方法的更多详细信息。总而言之,来自国际建模团队的大量模拟被用于确定排放与温度之间的关系。然后使用该关系来估计 IEA 全球排放情景对加拿大的气候影响。5
H. Damon Matthews 1*,Q。RobertB. Jackson 15,Chris D. Jones 16,Charles Koven 17,Retrow 2,Andrew H. Madougall 18和Kirsten Zickfeld 20
专家贡献者:设置现场:Katrin Meissner(新南威尔士大学,UNSW;和ARC气候极端卓越中心,CLEX)。冰盖和海平面:尼克·戈利奇(Nick Golledge)(新西兰维多利亚大学),费利西蒂·麦考马克(Monash University;确保南极洲的环境未来,SAEF); Kathy McInnes和Xuebin Zhang(CSiro)。海洋循环:马特·英格兰(UNSW和澳大利亚南极科学卓越中心,ACEAS)和Laura Herraiz Borreguero和Steve Rintoul(CSIRO)。海冰:Ariaan Purich(Monash University and Saef);佩特拉·海尔(澳大利亚南极师);威尔·霍布斯(Will Hobbs)(塔斯马尼亚大学和澳大利亚南极计划合作伙伴关系,AAPP)和Phil Reid(气象局)。生物圈和碳循环:Pep Canadell,Andrew Lenton和Tilo Ziehn(Csiro)以及Andy Pitman和Katrin Meissner(UNSW和CLEX)。
皮特·史密斯1 *,史蒂文·J·戴维斯2,菲利克斯·克鲁特齐格3,4,萨宾·福斯3,扬·米克斯3,5,6,贝诺伊特·加布里埃尔7,8,埃茨希·盖托9,埃茨西·盖托9,罗伯特·杰克逊·杰克逊·杰克逊·韦特尔·韦特尔·范·沃里恩12,13 , David 15 , Glen Peters 19 , Robbie Andrew 19 , Volker Krestha 20 , Pierre Friedlingstein 21 , Thomas Gasser 16,22 , Arnulf Grübler 15 , Wolfgang K. Heidu 23 , Matthiaas Jonas 15 , Chris D. Jones 24 , Florian Kraxner , José Roberto Morera 26 , Nebojsa Nakcenovic 15 , Michael Obeersteiner 15 ,Anand Patwardhan 27,Mathis Roner 15,Ed Rubin 28,Ayyob Sharifi 29,AsbjørnTorvanger 19,Yoshiki Yamagata 30,Jae Edmonds和Cho Yonssung 32 32 32
•自21世纪初以来,人为的气候强迫已经加速了,这主要是由于全球经济不断增长并降低了土地和海洋Co 2水槽的吸收效率(Canadell等,2007)。基于较旧的归因期的研究经常低估全球变暖对未表现的近期极端可能性的影响,这反映了归因期间频率和样本外验证期间频率之间的差异(Diffenbaugh,2020年)。•驱动极端事件发生的物理过程之间的发生时间尺度不同,提出了独特的研究问题,并需要对事件的不同定义来了解基本机制。•过去的极端事件的数量本质上很小,由于观测值的稀缺性,可能会忽略许多事件(Seneviratne等,2021)。因此,动态模型的集合通常被其驱动程序的检测和归因委托,并且可能由模型限制引起的误解。•最新的数值气候模型中关键过程和反馈机制的不良表示,结合了初始状态下的不确定性,使复杂和混乱的系统(如大气)中的预测变得复杂(Faranda等,2017)。
凯瑟琳·贝耶(Kathleen Beyer)6,格雷格·博德克(Greg Bodeker)7,奥利维尔·布歇(Olivier Boucher)12,埃里希·菲舍尔(Erich Fischer)13,福斯特24,25,克里斯·伦纳德(Chris Lennard)26,塔比亚·利斯纳(Tabea Lissner),27,亚历山大4:1,21,格伦·彼得斯28,安娜·皮拉尼29.30 ,贝德斯43:44,托库塔45,
出版物气候与环境Ruehr,S.,Bassiouni,M.,Kang,Y.,Socolar,Y.,Magney,T.,Keenan,T.F。作物轮作提高了加利福尼亚州中部山谷中的农业用水效率(为自然可持续性做好准备)。Ruehr,S.,Gerlein-Safdi,C.,Falco,N.,Seibert,P.,Chou,C.,Albert,L.,Keenan,T.F。带有新型高光谱成像仪的太阳诱导荧光的季节性和昼夜周期。2024。地球物理研究信,51,14。10.1029/2023GL107429。Ruehr,S.,Girotto,G.,Verfaillie,J.,Baldocchi,D.,Cabon,A.,Keenan,T.F。2023。ecosys- TEM地下水使用可以增强半干旱橡木稀少度中的碳水槽。农业与森林气象学,342,109725。10.1016/j.agrformet.2023.109725。Ruehr,S.,Keenan,T.F.,Williams,C.,Zhou,Y.,Lu,X.,Bastos,A.,Canadell,P.,Prentice,I.C.,I.C.,Sitch,S.,Terrer,C。证据和归属于增强的土地碳水槽。 2023。 自然评论地球与环境,4,518-534。 10.1038/S43017-023-00456-3。 Massoud,E.C。,Andrews,L.,Reichle,R.,Molod,A.,Park,J.,Ruehr,S.,Girotto,M.2022。 在戈达德地球观察系统中,高山地区的季节性预测技能。 地球系统动力学,14,147-171。 10.5194/ESD-14-147-2023。 Ruehr,S。2021。 超出了脆弱性/弹性二分法:对瓦努阿图Emau气候危机的看法和反应。 岛研究杂志。 2020。 干旱环境杂志,176,104120。Ruehr,S.,Keenan,T.F.,Williams,C.,Zhou,Y.,Lu,X.,Bastos,A.,Canadell,P.,Prentice,I.C.,I.C.,Sitch,S.,Terrer,C。证据和归属于增强的土地碳水槽。2023。自然评论地球与环境,4,518-534。10.1038/S43017-023-00456-3。 Massoud,E.C。,Andrews,L.,Reichle,R.,Molod,A.,Park,J.,Ruehr,S.,Girotto,M.2022。 在戈达德地球观察系统中,高山地区的季节性预测技能。 地球系统动力学,14,147-171。 10.5194/ESD-14-147-2023。 Ruehr,S。2021。 超出了脆弱性/弹性二分法:对瓦努阿图Emau气候危机的看法和反应。 岛研究杂志。 2020。 干旱环境杂志,176,104120。10.1038/S43017-023-00456-3。Massoud,E.C。,Andrews,L.,Reichle,R.,Molod,A.,Park,J.,Ruehr,S.,Girotto,M.2022。在戈达德地球观察系统中,高山地区的季节性预测技能。地球系统动力学,14,147-171。10.5194/ESD-14-147-2023。Ruehr,S。2021。超出了脆弱性/弹性二分法:对瓦努阿图Emau气候危机的看法和反应。岛研究杂志。2020。干旱环境杂志,176,104120。10.24043/isj.151 Ruehr,S.,Lee,X.,Smith,R.,Li,X.,Xu,Z.,Liu,S.,Yang,X.对Zhangye Cropland的绿洲效应的机械研究。10.1016/j.jaridenv.2020.104120 Espeland,M.,Hall,J.P.,Devries,P.J.2015。古老的新热带起源和最近的再持续化:riodinidae的系统发育,生物地理学和多样化(鳞翅目:乳头状素)。分子系统发育进化,93,296-306。10.1016/j.ympev.2015.08.006