2024年的微生物,电缆细菌Elektronema,放大了10,000次,形成了纠缠的电缆。图像:Pia B. Jensen,Aarhus(CC By 4.0)。
微生物群落中的土壤中的微生物群落仍然在很大程度上未知,尽管它们在温室气体的循环中起着重要作用。在这里,我们报告了从挪威北部Rásttigáisá的矿物苔原土壤中回收的59种非冗余元基因组组装基因组(MAGS)。通过根据四核苷酸频率和差异覆盖范围来通过聚类重叠群来获得MAG,并进行手动策划以去除具有外围GC含量和/或平均覆盖率的重叠群。大多数MAG被分配到细菌门念珠菌(n = 12),verrucomicrobiota(n = 10)和酸眼杆菌(n = 9)。所有古细菌(n = 4)属于硝基果酸念珠菌(Themoproteota)。59Rásttigáisámags扩大了我们对苔原微生物组的多样性和生态作用的了解。
佛罗里达州食品与农业科学系微生物学和细胞科学研究所,佛罗里达州佛罗里达州1355 Drive Gainesville,FL 32611-0700 RSR编号23-213-01RSR RE:Sweet Orange的监管状态审查,用于使用基因工程进行抗体的candieian thribie the Arabiatian the Arabiat and oberatient the Arapitiation and obsitation and obsitation and obsitation and obsitation and obsitation and obsitation and obsitation and ob ub the the Sweet Orange的审查NPR1基因以及对某些抗生素的抗性,包括卡纳米霉素和新霉素,通过表达新霉素磷酸转移酶基因。是食品和农业科学研究所微生物和细胞科学系,谢谢您的信函,日期为2023年9月13日,要求对使用基因工程(改良甜橙)开发的甜橙色的监管状态审查(RSR)。在您的信中,您描述了通过拟南芥NPR1 NPR1基因的本构和无处不在的表达来改善对candidatus liberibacter assiaticus的植物防御,并通过表达Neomycin磷酸酶基因的表达来改善植物防御。
diaphorin是由“ candidatus profftella armatura”(伽马马环状)产生的聚酮化合物,这是重要的农业害虫的强制性互助者,亚洲柑橘cyllid psyllid-ina-ina citri- citri(hemiptera)。我们先前的研究表明,diaphorin在d的生理浓度下。citri,抑制枯草芽孢杆菌(Firmicutes)的生长和细胞分裂,但促进了大肠杆菌(γ-蛋白酶菌)的生长和代谢活性。这种独特的diaphorin特性可以帮助D。citri,可能会影响“念珠菌自由杆菌属”的传播。 (字母杆菌),最具破坏性柑橘疾病的病原体。此外,可以利用该特性来促进微生物生产工业材料的效率。但是,此活动的基础机制尚不清楚。diaphorin属于Pederin-型化合物的家族,该家族通过与真核生物核糖体结合来抑制真核生物中的蛋白质合成。因此,作为评估diaphorin对细菌基因表达的直接影响的第一步,这项研究检查了使用b的核糖体使用diaphorin对体外翻译的影响。枯草和e。大肠杆菌,量化绿色荧光蛋白的产生。结果表明涉及b的基因表达。枯草和e。大肠杆菌核糖体以及五毫米透明蛋白分别为29.6%和13.1%,而不是对照。这表明diaphorin对b的不良影响。枯草液至少部分地归因于其对基因表达的抑制作用。此外,由于翻译系统的成分是常见的,除了核糖体以外,b骨出现了更大的抑制作用。枯草核糖体暗示核糖体是diaphorin的潜在靶标之一。另一方面,结果也暗示diaphorin对E的积极影响。大肠杆菌是由于转录和翻译的核心机制以外的目标。这项研究首次进行了pederin同类体影响细菌基因表达的情况。
在葡萄黄色中,与“念珠菌植物性溶胶”相关的Bois Noir(BN)代表了全球主要葡萄酒种植地区的最大威胁,在浆果质量和产量中造成了显着损失。bn流行病学涉及多个植物宿主和几个昆虫媒介,从而使有效的管理策略的发展变得非常复杂。由于在葡萄树冠上的施用杀虫剂在管理媒介方面无效,因此,BN管理包括基于冠层处理的综合方法,使植物使植物对病原体的抵抗力和/或抑制载体的饲料具有更大的抵抗力,以及对储层植物的行动,以减少载体的可能性,以减少葡萄剂和传播phytoplasma。在过去的二十年中开发了创新的可持续战略,以改善BN管理,并进行了讨论。
最近开发的CRISPR激活剂(CRISPRA)系统使用基于CRISPR-CAS效应子的转录激活剂有效地控制靶基因的表达而不会引起DNA损伤。但是,基于CAS9/CAS12A的现有CRISPRA系统必须在效力和准确性方面提高,这是由于与CRISPR-CAS模块本身相关的限制。为了克服这些局限性,并有效,准确地调节基因表达,我们基于小的CRISPR-CAS效应子candidatus woesearchaeota cas12f(CWCAS12F)开发了一个有效的CRISPRA系统。通过设计CRISPR-CAS模块,链接激活域,并使用接头和核定位信号序列的各种组合,优化的ECWCAS12F-VPR系统启用了与使用现有CRISPRA系统相比,基因表达的有效和目标特定于基因表达的调节。这项研究中开发的ECWCAS12F-VPR系统具有控制生物体内源基因转录的巨大潜力,并为未来的基因疗法和生物学研究提供了基础。
连续的高强度光暴露会抑制厌氧铵氧化(Anammox)细菌,尽管对Anammox反应堆性能的特定影响尚不清楚。这项研究研究了长期光应力对Anammox污泥反应堆的影响,并探讨了茶多酚作为减轻照片氧化损害的振奋干预措施的使用。结果表明,反应器的氮去除效率(NRE)在10,000 Lx的光条件下迅速恶化至41.4%。然而,补充了1mg·l -1和5mgÅL -1茶多酚的反应器分别为75.2%和82.5%。通过清除活性氧(例如×OH和H 2 O 2),以及增强包括总超氧化物歧化酶和gluta thione thione过氧化物酶的活性,添加茶多酚通过清除活性氧的氧化应激来减轻氧化应激。Kuenenia念珠菌受到光的负面影响,而未分类的_f__肉胶质科则在光压力下繁荣发展。这些发现为在光照暴露下开发稳定的氮去除系统的开发提供了见解。
微生物在生物废水处理中起关键作用。由于各种微生物结构的不同条件,生物质形式的形式决定了有机化合物转化的效率和机制。但是,比较生物膜和活性污泥中微生物群落的研究结果经常发生冲突。因此,本研究比较了使用16S rRNA测序的杂种反应器中生物膜中细菌群落和活化污泥的组成和发展。统计分析包括鉴定生物膜特征和活性污泥,α和β多样性分析以及网络分析的分类单元。这些分析表明,生物膜细菌群落比激活的污泥社区更丰富,更多样化。在生物膜中的平均数量为1614,而活化污泥的平均数为993,而CHAO1(1735 vs. 1105)和Shannon(5.3 vs. 4.3)生物多样性指数的平均值显着更高。生物膜是硝化剂(例如硝基瘤,硝基螺旋体)和磷积聚生物体(Candidatus累积)的更好环境。生物膜共发生网络中的细菌彼此之间具有更多的连接(基于Spearman的等级相关系数),这表明它们的相互作用比活性污泥中的相互作用更多。
向管理计划的过渡于2017年9月开始,并于2018年5月中旬完成。该TPP国家管理计划(管理计划)提供了一个总体框架,开发了司法管辖权计划,以减轻TPP的商业蔓延,并确保在司法管辖区之间继续进行产品持续。管理计划的基础是由国家TPP协调指导委员会(附录1)制定的科学证据和基于风险的评估。管理计划描述了害虫(TPP)和candidatus liberibacter solanacearum(CLSO)的症状,鉴定和测试,TPP是唯一已知的向量,以及预防措施和消毒程序,以防止有害生物和自由杆菌差。管理计划还概述了最佳实践方法来养殖生物安全,并提供决策树,以指导种植者在TPP感染的作物中,以最佳方法的方式引导种植者。还概述了检查是否存在TPP的监视程序。重要的是,管理计划阐明了政府,行业和其他利益相关者在澳大利亚管理TPP的同意角色和责任。最后,管理计划重点介绍了未来的研究机会。