没有终止电阻,收发器的内部共同模式电压缓冲区仍然可以将canh and Canl带在一起,但速率要慢得多。总线线上的电容载荷也可以减慢CANH和罐头电压的合并。When the controller sends pulses to the TXD pin, and if the recessive interval is not long enough for the differential voltage (CANH – CANL) to go below the input low-threshold for 10 consecutive pulse cycles (RXD signal stays low for the 10 TXD-signal pulses), a trans- mission failure fault will be reported.这也意味着,如果TXD信号的高时间太长,则可以进入隐性模式,并且RXD信号将变高,不会报告传输故障故障。推荐的最小TXD脉冲频率检测到反式失效故障,为200 kHz。
边境贸易和外国直接投资减少了非正式部门的参与(例如,参见Goel等人(2019); Blanton等。(2018); Huynh等。(2020);爱情人(2021); Canh等。(2021))。
参数 最小值 最大值 单位 VDDP、VDDL 逻辑侧电源电压 2 –0.5 6.0 V VISO OUT、VISO IN 总线侧电源电压 2 –0.5 6.0 VVI 逻辑侧输入电压(TXD) –0.5 VDDL + 0.5 3 VV BUS 总线引脚(CANH、CANL)上的电压,参考 GND2 –42 42 VV BUS_DIFF 总线引脚(CANH – CANL)上的差分电压 –42 42 VIO RXD 引脚上的输出电流 –20 20 mA TJ 结温 –40 150 °CT STG 存储温度 – 65 150 °C 注:1. 超出绝对最大额定值所列的应力可能会对器件造成永久性损坏。这些仅为应力额定值,并不保证器件在这些条件下或超出建议工作条件任何其他条件下能够正常运行。长时间暴露在绝对最大额定条件下可能会影响器件的可靠性。2. 所有电压值均相对于本地接地端子(GNDP1/GND1 或 GNDP2/GND2),且为峰值电压值。3. 最大电压不得超过 6V。7.2 ESD 额定值 值 单位
您对人工智能的理解不可避免地植根于丰富的历史发展,反映了我们对智能本身的态度的深刻转变。智能作为一个概念,其根源可以追溯到思考思想和认知本质的古代哲学。20 世纪中叶预示着一个分水岭时刻,当时艾伦·图灵和约翰·麦卡锡等先驱开始正式确定当今人工智能的基础原则。图灵的开创性工作提出了机器能够模拟人类推理的想法,从而导致了第一批能够执行简单任务的程序的开发,这开始模糊人机能力之间的界限(Aleksei Matveevic Rumiantsev,1983 年;Boughton,1994 年;Canh 和 Thanh,2020 年;Engels,1844 年;Gilpin 和 Gilpin,2001 年;Harris,2020 年;IMF,1994 年、2021 年;Keynes,1936 年;列宁,1916 年;马克思,1867 年;OECD,2021 年;Papageorgiou,2012 年;Richardson,1964 年;Rikhardsson 等,2021 年;Stiglitz,2002 年;世界银行,2003 年;世界银行集团,2024b
虽然如今关于人工智能的许多讨论似乎都很现代和新颖,但它的起源可以追溯到 20 世纪中叶,当时计算理论和认知科学领域出现了许多开创性的想法。这个时代的先驱人物,包括艾伦·图灵这样的人物,开始假设机器可以模拟智能行为。图灵在 1950 年发表的开创性论文提出了关于智能本质以及机器是否能够模拟人类认知过程的深刻问题。这一研究为我们现在所说的人工智能建立了一个框架,为未来的发展奠定了基础(Aleksei Matveevic Rumiantsev,1983 年;Boughton,1994 年;Canh 和 Thanh,2020 年;Engels,1844 年;Gilpin 和 Gilpin,2001 年;Harris,2020 年;IMF,1994 年、2021 年;Keynes,1936 年;列宁,1916 年;马克思,1867 年;OECD,2021 年;Papageorgiou,2012 年;Richardson,1964 年;Rikhardsson 等,2021 年;Stiglitz,2002 年;世界银行,2003 年;世界银行集团,2024b 年、2024a)。
这些变化的影响不仅限于数量增长统计数据。人工智能融入经济框架有助于更公平地分配资源和机会。新兴市场常常受到系统性不平等的困扰,它们可以利用人工智能技术跨越传统障碍,使教育、医疗保健和就业更加民主化。因此,人工智能与经济增长之间的联系提供了对繁荣的更全面的理解,其驱动力是技术与人类进步雄心的融合(Aleksei Matveevic Rumiantsev,1983 年;Boughton,1994 年;Canh & Thanh,2020 年;Engels,1844 年;Gilpin & Gilpin,2001 年;Harris,2020 年;IMF,1994 年、2021 年;Keynes,1936 年;列宁,1916 年;马克思,1867 年;OECD,2021 年;Papageorgiou,2012 年;Richardson,1964 年;Rikhardsson 等人,2021 年;Stiglitz,2002 年;世界银行,2003 年;世界银行集团,2024b 年、2024a)。
图 2 中的框图描述了 ECU 的内部结构。通常,ECU 由独立收发器(此处为 TJA1040)和集成 CAN 控制器的主机微控制器组成,由电压调节器供电。虽然高速 CAN 收发器需要 +5 V 电源电压来支持 ISO11898 总线电平,但新的微控制器产品越来越多地使用 3.3 V 等较低电源电压。在这种情况下,微控制器电源需要专用的 3.3 V 电压调节器。协议控制器通过串行数据输出线 (TXD) 和串行数据输入线 (RXD) 连接到收发器。收发器通过其两个总线端子 CANH 和 CANL 连接到总线线路,这两个总线端子提供差分接收和发送功能。对于 TJA1040,引脚 STB 连接到主机微控制器的 I/O 引脚,用于操作模式控制。可以使用引脚 SPLIT 进一步改进分裂终端方法,以实现共模电压的直流稳定(第 4.4 节)。
水稻(Oryza sativa L.)是世界范围内广泛种植的重要粮食作物之一。水稻在全球粮食安全中发挥的巨大作用促使研究人员开发具有改良农艺性状的新水稻品种,例如耐受生物和非生物胁迫。 CRISPR/Cas9基因编辑系统由于其高效、易用、高精度,为改善多种作物的农艺性状提供了一种很有前景的策略。本文讨论了CRISPR/Cas9在改良更适应不利环境条件的水稻品种中的应用。利用CRISPR/Cas9系统对水稻抗病(白叶枯病和稻瘟病)、抗除草剂和抗逆(盐、旱、寒)等一系列功能基因和调控基因进行了功能分析。还分析了该技术在水稻上应用的一些局限性和优点。该研究结果概述了基因编辑工具,从而指导其在越南应对气候变化的作物品种研究中的应用。